CSCI 5525: Machine Learning (Fall 2020)

Homework 1
Due 10/1/2020 11:59 PM CDT

1. (15 points) The expected loss of a function f(z) in modeling y using loss function ¢(f(x), y)
is given by

Baplt(f2).)) = [/ A) ol)y = [{ / e<f<x>,y>p<y|x>dy}p<x>dx |

(a) (7 points) What is the optimal f(z) when ¢(f(x),y) = (f(x) — y)>.

(b) (8 points) What is the optimal f(z) when ¢(f(z),y) = |f(z) — y|, where |- | represents
absolute value.

2. (10 points) A generalization of the least squares problem adds an affine function to the least
squares objective,
min |[Aw — b2 +c'w+d
w

where A € R™*" w € R", b € R™ ¢ € R",d € R. Assume the columns of A are linearly
independent. This generalized problem can be solved by reducing it to a standard least
squares problem, using a trick called completing the square.

Show that the objective of the problem above can be expressed in the form

|[Aw —b|2+c'w+d=||Aw —b+f|2+g

where f € R™ g € R. Then solve the generalized least squares problem by finding the w that
minimizes |Aw — (b — f)]|3.

Programming assignments: The next two problems involve programming. We will be consid-
ering two datasets for these assignments:

(a) Boston: The Boston housing dataset comes prepackaged with scikit-learn. The dataset has
506 data points, 13 features, and 1 target (response) variable. You can find more information
about the dataset here: https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.load_boston.html.

While the original dataset is for a regression problem, we will create two classification datasets
for the homework. Note that you only need to work with the target ¢ to create these classifi-
cation dataset, the data X should not be changed.

First, load the dataset in with the following commands:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html

import sklearn as sk
X, t = sk.datasets.load_boston (return_X_y=True)

Then, create the two following data sets.

i. Boston50: Let 750 be the median (50th percentile) over all ¢ (response) values. Create a
2-class classification problem such that one class corresponds to label y = 1 if ¢t > 759 and
the other class corresponds to label y = 0 if ¢ < 759. By construction, note that the class
priors will be p(y = 1) ~ %,p(y =0)~ %

ii. Boston75: Let 775 be the 75th percentile over all ¢ (response) values. Create a 2-class
classification problem such that one class corresponds to label y = 1 if ¢ > 775 and the
other class corresponds to label y = 0 if t < 775. By construction, note that the class priors
will be p(y = 1) =~ %, p(y = 0) ~ 3.

(b) Digits: The digits dataset comes prepackaged with scikit-learn. The dataset has 1797 data
points, 64 features, and 10 classes corresponding to ten numbers 0,1,...,9. You can find more
information about the dataset here: https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.load_digits.html.

3. (35 points) In this problem, we consider Fisher’s linear discriminant analysis (LDA) for
this problem. Implementp_-], train, and evaluate the following classifiers using 10-fold cross-
validation:

(i) (15 points) For the Boston50 dataset, apply LDA in the general case, i.e., compute
both the between-class and within-class covariance matrices Sp and Sy, respectively,
from the training data, project the data onto R (one dimension), and then find a suit-
able threshold (one that minimizes classification error) to classify the training samples
correctly.

(ii) (20 points) For the Digits dataset, apply LDA in the general case, i.e., compute Sp
and Sy from the data, project the data to R? (two dimensions), then use bi-variate
Gaussian generative modeling to do 10-class classification, i.e., estimate and use class
priors m and parameters (pg, Xg), k= 1,...,10.

You will have to submit (a) summary of methods and results report and (b) code for
each algorithm:

(a) Summary of methods and results: Briefly describe the approaches in (i) and (ii)
above, along with relevant equations. Also, report the training and test set error rates
and standard deviations from 10-fold cross validation for the methods on the datasets.

(b) Code: For part (i), you will have to submit code for LDA1dThres (num_crossval) (main
file). This main file has input: the number of folds for cross-validation, and output: the
training and test set error rates and standard deviations printed to the terminal (stdout).
For part (ii), you will have to submit code for LDA2dGaussGM (num_crossval), with all
other guidelines staying the same.

You must implement all algorithms in this homework from scratch; you cannot use toolboxes like scikit-learn.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html

4. (40 points) In this problem, the goal is to evaluate the results reported in the paper “On
Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes”
by A. Ng and M. Jordalﬂ using the Boston50, Boston75, and Digits datasets. Implement,
train, and evaluate two classifiers:

(i) (20 points) Logistic regression (LR), and
(ii) (20 points) Naive-Bayes with marginal Gaussian distributions (GNB)

on all three datasets. Evaluation will be done using 10 random class-specific 80-20 train-
test splits, i.e., for each class, pick 80% of the data at random for training, train a classifier
using training data from all classes, use the remaining 20% of the data from each class as
testing, and repeat this process 10 times. We will be creating a learning curve, similar to the
Ng-Jordan paper—please see guidelines below.

You will have to submit (a) summary of methods and results report and (b) code for
each algorithm:

(a) Summary of methods and results: Briefly describe the approaches in (i) and (ii)

above, along with (iterative) equations for parameter estimation. Clearly state which
method you are using for logistic regression. For each dataset and method, create a plot
of the test set error rate illustrating the relative performance of the two methods with
increasing number of training points (see instructions below). The plots will be similar in
spirit to Figure 1 in the Ng-Jordan paper, along with error-bars with standard deviation
of the errors.
Instructions for plots: Your plots will be based on 10 random 80-20 train-test splits.
For each split, we will always evaluate results on the same test set (20% of the data),
while using increasing percentages of the training set (80% of the data) for training. In
particular, we will use the following training set percentages: [10 25 50 75 100], so
that for each 80-20 split, we use 10%, 25%, all the way up to 100% of the training set for
training, and always report results on the same test set. We will repeat the process 10
times, and plot the mean and standard deviation (as error bars) of the test set errors for
different training set percentages.

(b) Code: For logistic regression, you will have to submit code for logisticRegression(num splits,

train_percent). This main file has input: the number of 80-20 train-test splits for eval-

uation, (3) and a vector containing percentages of training data to be used for training

(use [10 25 50 75 100] for the plots), and output: test set error rates for each training

set percent printed to the terminal (stdout). The test set error rates should include both

the error rates for each split for each training set percentage as well as the mean of the

test set error rates across all splits for each training set percentage (print the mean error

rates at the end).

For naive Bayes, you will have to submit code for naiveBayesGaussian(num_splits,
train_percent), with all other guidelines staying the same.

Additional instructions: Code can only be written in Python 3.6+; no other programming
languages will be accepted. One should be able to execute all programs from the Python command
prompt or terminal. Please specify instructions on how to run your program in the README file.

Zhttps://ai.stanford.edu/~ang/papers/nipsOl-discriminativegenerative.pdf

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

Each function must take the inputs in the order specified in the problem and display the textual
output via the terminal and plots/figures should be included in the report.

For each part, you can submit additional files/functions (as needed) which will be used by the
main file. In your code, you cannot use machine learning libraries such as those available from
scikit-learn for learning the models or for cross-validation. However, you may use libraries for basic
matrix computations. Put comments in your code so that one can follow the key parts and steps
in your code.

Your code must be runnable on a CSE lab machine (e.g., csel-kh1260-01.cselabs.umn.edu).
One option is to SSH into a machine. Learn about SSH at these links: https://cseit.umn.edu/
knowledge-help/learn-about-ssh, https://cseit.umn.edu/knowledge-help/choose-ssh-tool,
and https://cseit.umn.edu/knowledge-help/remote-linux-applications-over-ssh.

Instructions
Follow the rules strictly. If we cannot run your code, you will not get any credit.

e Things to submit
1. hwl.pdf: A document which contains the solutions to Problems 1, 2, 3, and 4, which
including the summary of methods and results.
2. LDA1dThres and LDA2dGaussGM: Code for Problem 3.
3. logisticRegression and naiveBayesGaussian: Code for Problem 4.

4. README.txt: README file that contains your name, student ID, email, instructions
on how to run your code, any assumptions you are making, and any other necessary
details.

5. Any other files, except the data, which are necessary for your code.

Homework Policy. (1) You are encouraged to collaborate with your classmates on homework
problems, but each person must write up the final solutions individually. You need to list in the
README.txt which problems were a collaborative effort and with whom. (2) Regarding online
resources, you should not:

e Google around for solutions to homework problems,
e Ask for help on online,

e Look up things/post on sites like Quora, StackExchange, etc.

https://cseit.umn.edu/knowledge-help/learn-about-ssh
https://cseit.umn.edu/knowledge-help/learn-about-ssh
https://cseit.umn.edu/knowledge-help/choose-ssh-tool
https://cseit.umn.edu/knowledge-help/remote-linux-applications-over-ssh

