
CSci 5525 Homework 4

Luis Guzman

Thursday December 10, 2020

1. For this problem, I implemented the Adaboost algorithm using 100 decision stumps as my weak learners
and applied it to the Wisconsin Breast Cancer dataset. This particular dataset has some (16 total)
missing values, so I chose to replace those instances with the mode of that feature’s data. The decision
stumps were implemented from scratch using binary splitting on the feature that maximizes information
gain:

IG(S, a) = H(S)−
∑

v∈vals(a)

|Sv|
|S|

H(Sv)

H(X) = −
n∑

i=1

P (xi) logP (xi)

where IG is the information gain and H is the information entropy. The Adaboost algorithm starts by
initializing the weight vector w1(i) to 1/n where n is the number of data samples. At each iteration, I
trained a new decision stump Gt, and computed that weak learner’s error εt as

εt =

n∑
i=1

wt(i)1(yi 6= Gt(xi))

Each weak learner then gets a weight assiciated with it, which indicates how well it classifies the
dataset:

αt =
1

2
ln(

1− εt
εt

)

I then update the sample weights so that the next classifier puts more emphasis on the misclassified
data

wt+1 =
wt(i) exp(−αtyiGt(xi))

zi

where zi =
∑n

i=1 wt+1(i) is the normalization factor. Rather than modifying the information gain
equations to account for the Adaboost weights, I chose to resample the dataset with replacement at
each iteration, using the weights as the sampling probability distribution.

Xtrain = X[np.random.choice(X.shape[0], X.shape[0], replace=True, p=w)]

This resampling method ensures that subsequent weak learners respond more strongly to misclassified
datapoints. The final prediction of the ensemble of weak learners is then the weighted average of their
outputs

g(x) = sign(

T∑
t=1

αtGt(x))

I evaluated my model by computing the test error at each step as I add more weak learners to the
ensemble. My first weak learner classified the test dataset with around 9% accuracy, and this value
decreased to around 4% after adding 10 weak learners. As I added more weak learners, the error
actually increased because the later learners were not contributing useful data to the ensemble. My
error rates are shown in figure 1

1

Figure 1: The testing error rate plotted against the number of weak learners in the ensemble

2. In the next problem, I implemented the Random Forest algorithm on the same dataset as above. I
again used information gain to determine the best feature to split on, but to increase the randomness
of my random forest, I limited each decision stump to consider only m random features of the dataset.
In part (i), I chose m=3 and plotted the testing error vs. the number of weak learner in the forest. In
part (ii), I vary m from 1 to 9 (I only had 9 features since I threw away the patient ID) and plotted
the testing error for each value of m. My results are given below:

Figure 2: The testing and training error rates plotted against the number of weak learners in the random
forest

Figure 3: The testing and training error rate plotted against the number of random features (m) for each
weak learner

The results for varying m are expected because lower values of m increase the randomness and thus
lead to a more robust ensemble classifier.

2

3. In the last problem on this homework, I implemented the kmeans algorithm and used it to segment
images based on pixel color. The algorithm was pretty straightforward, so I won’t overview that here,
but I chose to evaluate the algorithm using the distortion measure:

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||

where rnk is the indicator of xn ∈ Ck and µk is the mean of Ck. I plotted the loss per iteration and
show the resulting images below:

Figure 4: The original image and resulting images for kmeans segmentation for k=3,5,7

Figure 5: The loss (distortion measure) per iteration of kmeans

3

