
CSCI 5561: Assignment #3

Scene Recognition

1 Submission

• Assignment due: Nov 6 (11:55pm)

• Individual assignment

• Submission through Canvas.

• You will complete scene recognition.py that contains the following functions:

– get_tinyImage

– predict_knn

– classify_knn_tiny

– compute_dsift

– build_visual_dictionary

– compute_bow

– classify_knn_bow

– predict_svm

– classify_svm_bow

The code can be downloaded from
https://www-users.cs.umn.edu/~hspark/csci5561_F2020/scene_recognition.

py.

• DO NOT SUBMIT THE PROVIDED IMAGE DATA

• The function that does not comply with its specification will not be graded.

• The code must be run with Python 3 interpreter.

• You are not allowed to use computer vision related package functions unless ex-
plicitly mentioned here. Please consult with TA if you are not sure about the
listof allowed functions.

• Place code and a two-page summary write-up with resulting visualization (in pdf
format; more than 2 pages will be automatically returned.) into a folder, compress
it, and submit.

1

https://www-users.cs.umn.edu/~hspark/csci5561_F2020/scene_recognition.py
https://www-users.cs.umn.edu/~hspark/csci5561_F2020/scene_recognition.py


CSCI 5561: Assignment #3

Scene Recognition

2 Overview

Figure 1: You will design a visual recognition system to classify the scene categories.

The goal of this assignment is to build a set of visual recognition systems that classify
the scene categories. The scene classification dataset consists of 15 scene categories
including office, kitchen, and forest as shown in Figure 1 [1]. The system will compute
a set of image representations (tiny image and bag-of-word visual vocabulary) and
predict the category of each testing image using the classifiers (k-nearest neighbor and
SVM) built on the training data. A simple pseudo-code of the recognition system can
found below:

Algorithm 1 Scene Recognition

1: Load training and testing images
2: Build image representation
3: Train a classifier using the representations of the training images
4: Classify the testing data.
5: Compute accuracy of testing data classification.

For the knn classifier, step 3 and 4 can be combined.

2



CSCI 5561: Assignment #3

Scene Recognition

3 Scene Classification Dataset

You can download the training and testing data from here:
http://www.cs.umn.edu/~hspark/csci5561_F2020/scene_classification_data.zip

The data folder includes two text files (train.txt and test.txt) and two folders
(train and test). Each row in the text file specifies the image and its label, i.e.,
(label) (image path). The text files can be used to load images. In each folder, it
includes 15 classes (Kitchen, Store, Bedroom, LivingRoom, Office, Industrial, Suburb,
InsideCity, TallBuilding, Street, Highway, OpenCountry, Coast, Mountain, Forest) of
scene images.

Note: the image paths inside train.txt and test.txt were recorded in Windows
format (use \ instead of /). You may need to use function Path and PureWindowsPath

imported from pathlib to deal with that if you use Linux or Mac. But do not worry
about it since we have provided a function called extract_dataset_info, which can
read information from those two txt files for you.

3

http://www.cs.umn.edu/~hspark/csci5561_F2020/scene_classification_data.zip


CSCI 5561: Assignment #3

Scene Recognition

4 Tiny Image KNN Classification

(a) Image (b) Tiny Image

Figure 2: You will use tiny image representation to get an image feature.

def get_tiny_image(img, output_size):

...

return feature

Input: img is an gray scale image, output_size=(w, h) is the size of the tiny image.
Output: feature is the tiny image representation by vectorizing the pixel intensity.
The resulting size will be w×h.
Description: You will simply resize each image to a small, fixed resolution (e.g.,
16×16). You need to normalize the image by having zero mean and unit length. This
is not a particularly good representation, because it discards all of the high frequency
image content and is not especially invariant to spatial or brightness shifts.

def predict_knn(feature_train, label_train, feature_test, k):

...

return label_test_pred

Input: feature_train is a ntr × d matrix where ntr is the number of training data
samples and d is the dimension of image feature, e.g., 265 for 16×16 tiny image rep-
resentation. Each row is the image feature. label_train∈ [1, 15] is a ntr vector that
specifies the label of the training data. feature_test is a nte× d matrix that contains
the testing features where nte is the number of testing data samples. k is the number
of neighbors for label prediction.
Output: label_test_pred is a nte vector that specifies the predicted label for the
testing data.
Description: You will use a k-nearest neighbor classifier to predict the label of the
testing data.

4



CSCI 5561: Assignment #3

Scene Recognition

Kit Sto Bed Liv Off Ind Sub Cty Bld St HW OC Cst Mnt For
Accuracy: 0.205333

Kitchen

Store

Bedroom

LivingRoom

Office

Industrial

Suburb

InsideCity

TallBuilding

Street

Highway

OpenCountry

Coast

Mountain

Forest

Figure 3: Confusion matrix for Tiny+KNN.

def classify_knn_tiny(label_classes, label_train_list,

img_train_list, label_test_list, img_test_list):

...

return confusion, accuracy

Input: label_classes is a list of all kinds of classes, img_train_list and img_test_list

are lists of paths to training and test images, label_train_list and label_test_list

are corresponding lists of image scene labels.
Output: confusion is a 15× 15 confusion matrix and accuracy is the accuracy of the
testing data prediction.
Description: You will combine get_tiny_image and predict_knn for scene classifi-
cation. Your goal is to achieve the accuracy >18%.
Note: We have provided a function called extract_dataset_info which takes in path
to dataset directory and output label_classes, label_train_list, img_train_list,
label_test_list, img_test_list for you(those will be the input arguments to func-
tion classify_knn_bow and classify_svm_bow as well). To make your life and ours
easier, please make sure you use that function.

5



CSCI 5561: Assignment #3

Scene Recognition

5 Bag-of-word Visual Vocabulary

Figure 4: Each row represents a distinctive cluster from bag-of-word representation.

def compute_dsift(img, stride, size):

...

return dense_feature

Input: img is a gray scale image. stride and size are both integers controls locations
on image to compute sift features and diameter of the meaningful keypoint neighbor-
hood.
Output: dense_feature is a collection of sift features whose size is n×128. n is total
number of locations to compute sift features on img.
Description: Given an image, instead of detecting key points and computing sift de-
scriptor, this function directly compute sift descriptor on a dense set of locations on
image. You can use sift related functions from opencv for computing sift descriptor for
each location.

def build_visual_dictionary(dense_feature_list, dic_size):

...

return vocab

Input: dense_feature_list is a list of dense sift feature representation of training
images (each image is represented as a n x 128 array) and dic_size is the size of the
dictionary (the number of visual words). Function compute_dsift is provided to ex-
tract dense sift features from an image.
Output: vocab lists the quantized visual words whose size is dic_size×128.
Description: Given a list of dense sift feature representation of training images,
you will build a visual dictionary made of quantized SIFT features. You may start

6



CSCI 5561: Assignment #3

Scene Recognition

dic_size=50. You can use KMeans function imported from sklearn.cluster. You
may visualize the image patches to make sense the clustering as shown in Figure 4.

Algorithm 2 Visual Dictionary Building

1: For each image, compute dense SIFT over regular grid
2: Build a pool of SIFT features from all training images
3: Find cluster centers from the SIFT pool using kmeans algorithms.
4: Return the cluster centers.

Note: It takes more than half hour to build bag-of-word visual vocabulary, if you use
default parameters of KMeans function(n_init=10,max_iter=300). You may want to
play around with those parameter and use np.savetxt to save current vocab if you
think it is good. Then you can use np.loadtxt to load that saved vocab in the future
to save your time.

Kit Sto Bed Liv Off Ind Sub Cty Bld St HW OC Cst Mnt For
Accuracy: 0.512667

Kitchen

Store

Bedroom

LivingRoom

Office

Industrial

Suburb

InsideCity

TallBuilding

Street

Highway

OpenCountry

Coast

Mountain

Forest

Figure 5: Confusion matrix for BoW+KNN.

def compute_bow(feature, vocab):

...

return bow_feature

Input: feature is a set of SIFT features for one image, and vocab is visual dictionary.
Output: bow_feature is the bag-of-words feature vector whose size is dic_size.
Description: Give a set of SIFT features from an image, you will compute the bag-of-
words feature. The BoW feature is constructed by counting SIFT features that fall into
each cluster of the vocabulary. Nearest neighbor can be used to find the closest cluster
center. The histogram needs to be normalized such that BoW feature has a unit length.

7



CSCI 5561: Assignment #3

Scene Recognition

def classify_knn_bow(label_classes, label_train_list,

img_train_list, label_test_list, img_test_list):

...

return confusion, accuracy

Input: refer to function classify_knn_bow

Output: confusion is a 15× 15 confusion matrix and accuracy is the accuracy of the
testing data prediction.
Description: Given BoW features, you will combine build_visual_dictionary,
compute_bow, and predict_knn for scene classification. Your goal is to achieve the
accuracy >50%.

8



CSCI 5561: Assignment #3

Scene Recognition

6 BoW+SVM

def predict_svm(feature_train, label_train, feature_test):

...

return label_test_pred

Input: feature_train is a ntr × d matrix where ntr is the number of training data
samples and d is the dimension of image feature. Each row is the image feature.
label_train∈ [1, 15] is a ntr vector that specifies the label of the training data.
feature_test is a nte × d matrix that contains the testing features where nte is the
number of testing data samples.
Output: label_test_pred is a nte vector that specifies the predicted label for the
testing data.
Description: You will use a SVM classifier to predict the label of the testing data.
You don’t have to implement the SVM classifier. Instead, you can use e.g. function
LinearSVC or SVC imported from sklearn.svm. Linear classifiers are inherently binary
and we have a 15-way classification problem. To decide which of 15 categories a test
case belongs to, you will train 15 binary, 1-vs-all SVMs. 1-vs-all means that each clas-
sifier will be trained to recognize ‘forest’ vs ‘non-forest’, ‘kitchen’ vs ‘non-kitchen’, etc.
All 15 classifiers will be evaluated on each test case and the classifier which is most con-
fidently positive “wins”. For instance, if the ‘kitchen’ classifier returns a score of -0.2
(where 0 is on the decision boundary), and the ‘forest’ classifier returns a score of -0.3,
and all of the other classifiers are even more negative, the test case would be classified
as a kitchen even though none of the classifiers put the test case on the positive side
of the decision boundary. When learning an SVM, you have a free parameter ’lambda’
(argument C in function LinearSVC and SVC) which controls how strongly regularized
the model is. Your accuracy will be very sensitive to lambda, so be sure to test many
values.
Note: LinearSVC and SVC can do multi-class classification if your input labels has
more than 2 classes. However, you should NOT take advantage of that. Instead, you
should create binary labels for each of those 15 binary 1-vs-all SVMs.

9



CSCI 5561: Assignment #3

Scene Recognition

Kit Sto Bed Liv Off Ind Sub Cty Bld St HW OC Cst Mnt For
Accuracy: 0.629333

Kitchen

Store

Bedroom

LivingRoom

Office

Industrial

Suburb

InsideCity

TallBuilding

Street

Highway

OpenCountry

Coast

Mountain

Forest

Figure 6: Confusion matrix for BoW+SVM.

def classify_svm_bow(label_classes, label_train_list,

img_train_list, label_test_list, img_test_list):

...

return confusion, accuracy

Input: refer to function classify_knn_bow

Output: confusion is a 15× 15 confusion matrix and accuracy is the accuracy of the
testing data prediction.
Description: Given BoW features, you will combine build_visual_dictionary,
compute_bow, predict_svm for scene classification. Your goal is to achieve the ac-
curacy >60%.

10



CSCI 5561: Assignment #3

Scene Recognition

References

[1] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories,” CVPR, 2006.

11


	Submission
	Overview
	Scene Classification Dataset
	Tiny Image KNN Classification
	Bag-of-word Visual Vocabulary
	BoW+SVM

