
CSci 5561 Assignment 4

Luis Guzman

Friday November 27, 2020

This assignment focused on the task of handwritten digit recognition by implementing four different
classification methods: a single layer linear perceptron (SLP), a single-layer perceptron using softmax cross-
entropy loss (SLP-CE), a multi-layer perceptron (MLP), and a convolutional neural network (CNN). The
SLP model achieved 27% accuracy, the SLP with cross entropy achieved 88% accuracy, the MPL was around
89% accurate, and the CNN was around 87% accurate. I will highlight my methods and elaborate on these
results in the following paragraphs.

The Single Layer Perceptron consisted of a single fully-connected layer with 10 output nodes (one for each
label). The fully connected layer implements the linear function y = wx + b, where w ∈ IRn×m, x ∈ IRm×1,
and b ∈ IRn×1. This model uses euclidean loss l = ||ỹ−y||2 and the gradient is dl

dy = 2(ỹ−y)T . I implemented

back-propagation using the equations dl
dx = dy

dy ·w,
dl
dw = x · dydy , and dl

db = dy
dy . Lastly, I generated mini batches

of size 32 from the dataset and performed stochastic gradient descent (SGD) to train the network. Figure 1
shows my results. The low accuracy is to be expected because the dataset is not easily classified by a linear
model.

Figure 1: The network architecture, loss per iteration and the resulting confusion matrix for the SLP

The next algorithm uses cross entropy loss to greatly improve the accuracy of the single-layer perceptron.
The softmax cross-entropy loss is defined as l =

∑m
i yi log ỹi where ỹi = exp xi∑

i exp xi
. I then calculated the

gradient to be dl
dy = (ỹ − y)T . This model performed much better, with an accuracy of 88%

Figure 2: The network architecture, loss per iteration and the resulting confusion matrix for the SLP-CE

1

Next, I added an additional hidden layer to form a Multi-Layer Peceptron. This hidden layer used the
ReLU activation function, which is defined as y = max(x, 0) This activation function essentially forces all
negative values of x to not contribute to the gradient, so the back propagation function must take this into
account: dl

dx = dl
dy �1x≥0 where � indicates element-wise matrix multiplication and 1x≥0 is the matrix where

each element i is 1 if xi ≥ 0 and 0 otherwise. This method had a marginal improvement over the SLP-CE,
with a final accuracy of 89%. I think further hyperparameter tuning could result in the ≥90% accuracy
mentioned in the problem statement, but I could not break the 90% mark despite trying many different
values for the learning and decay rates.

Figure 3: The network architecture, loss per iteration and the resulting confusion matrix for the MLP

Lastly, I implemented a convolutional neural network. I used the im2col function to restate the convolu-
tion operation as matrix multiplication. I used 3 filters of size 3×3, for a total w matrix of size 3×3×1×3.
I used same-padding and a stride of 1, so the input of the convolution layer was of size 14× 14× 1 and the
output was 14 × 14 × 3 (for the three separate filters). Next, I implemented a max-pooling layer. Using a
pooling size of 2× 2 and a stride of 2, the output of this layer was 7× 7× 3. The input was flattened before
the fully-connected layer and softmax activation.

Figure 4: The network architecture, loss per iteration and the resulting confusion matrix for the CNN

For the CNN backpropagation, I started with the pooling layer. Here, (dl
dx)i = (dl

dy)i if the input xi is the
maximum of its 2× 2 neighbors, and 0 otherwise. The flattening back-propagation is just a simple reshape,
and the ReLU backprop could be reused from the MLP. Lastly, the backpropagation for the convolutional
layer was calculated as follows: (dl

db)k =
∑

i

∑
j(

dl
dy)ijk and

dl_dw = dl_dy.reshape((3,-1)).dot(xcol).reshape(w_conv.shape)

where xcol is the result from im2col. My CNN had a testing accuracy of 87%. Similar to the MLP, I think
this is due to hyperparameter tuning, but even after running a grid search overnight I could not get my CNN
to beat the MLP accuracy. The values I tested were [0.05, 0.1, 0.3] for the learning rate, [0.5, 0.75, 0.9] for
the decay rate, and [16, 32, 64, 128] for the batch sizes. Results of the my grid search are included in the
zip file submission.

2

