CSci 5561 Assignment 4

Luis Guzman

Friday November 27, 2020

This assignment focused on the task of handwritten digit recognition by implementing four different
classification methods: a single layer linear perceptron (SLP), a single-layer perceptron using softmax cross-
entropy loss (SLP-CE), a multi-layer perceptron (MLP), and a convolutional neural network (CNN). The
SLP model achieved 27% accuracy, the SLP with cross entropy achieved 88% accuracy, the MPL was around
89% accurate, and the CNN was around 87% accurate. I will highlight my methods and elaborate on these
results in the following paragraphs.

The Single Layer Perceptron consisted of a single fully-connected layer with 10 output nodes (one for each
label). The fully connected layer implements the linear function y = wz + b, where w € R*™™ x € IR™*!
and b € IR™*!. This model uses euclidean loss | = || —y||2 and the gradient is % =2(g—y)T. Timplemented

back-propagation using the equations % = % -w, % =x- %, and % = %. Lastly, I generated mini batches

of size 32 from the dataset and performed stochastic gradient descent (SGD) to train the network. Figure
shows my results. The low accuracy is to be expected because the dataset is not easily classified by a linear
model.

1 Single-layer Linear Perceptron Confusion Matrix, accuracy = 0.271

0

1
2
3
4
5
6
7
8
9

(a) Single linear perceptron

o 2000 4000 6000 8000 10000

Figure 1: The network architecture, loss per iteration and the resulting confusion matrix for the SLP

The next algorithm uses cross entropy loss to greatly improve the accuracy of the single-layer perceptron.

The softmax cross-entropy loss is defined as | = Z:ﬂ y; log y; where y; = %. I then calculated the

gradient to be j—é = (§ — y)T. This model performed much better, with an accuracy of 88%

Single-layer Perceptron Confusion Matrix, accuracy = 0.887

S 0
6
f] / 7' 5
o> N
=] N 4
:IF .
3 H 3
& TN
> Vo
J10
1
. 0
(&) SlngIE-layer perceptron 0 1000 2000 3000 4000 5000

o 1 2 3 4 5 6 7 8 9

Figure 2: The network architecture, loss per iteration and the resulting confusion matrix for the SLP-CE

Next, I added an additional hidden layer to form a Multi-Layer Peceptron. This hidden layer used the
ReLU activation function, which is defined as y = max(z,0) This activation function essentially forces all
negative values of x to not contribute to the gradient, so the back propagation function must take this into
account: j—i = j—l ®14>0 where © indicates element-wise matrix multiplication and 1,>¢ is the matrix where
each element i is 1 if ; > 0 and 0 otherwise. This method had a marginal improvement over the SLP-CE,
with a final accuracy of 89%. I think further hyperparameter tuning could result in the >90% accuracy
mentioned in the problem statement, but I could not break the 90% mark despite trying many different
values for the learning and decay rates.

Multi-layer Perceptron Confusion Matrix, accuracy = 0.891

- _ Ao/ Vo)
NS S
au 0

[} 2000 4000 6000 8000 10000

(a) Multi-layer perceptron o 1 2 3 4 5 6 7 8 9

Figure 3: The network architecture, loss per iteration and the resulting confusion matrix for the MLP

Lastly, I implemented a convolutional neural network. I used the im2col function to restate the convolu-
tion operation as matrix multiplication. I used 3 filters of size 3 x 3, for a total w matrix of size 3 x 3 x 1 x 3.
I used same-padding and a stride of 1, so the input of the convolution layer was of size 14 x 14 x 1 and the
output was 14 x 14 x 3 (for the three separate filters). Next, I implemented a max-pooling layer. Using a
pooling size of 2 x 2 and a stride of 2, the output of this layer was 7 x 7 x 3. The input was flattened before
the fully-connected layer and softmax activation.

CNN Confusion Matrix, accuracy = 0.874

/
"
) . | [0 N

’

Input Conv(3) Relu Pool 2x2) Flatten FC Soft-max 0
(;1) CNN o 2000 4000 6000 8000 10000

Figure 4: The network architecture, loss per iteration and the resulting confusion matrix for the CNN
For the CNN backpropagation, I started with the pooling layer. Here, (%)i = (%)i if the input z; is the
maximum of its 2 x 2 neighbors, and 0 otherwise. The flattening back-propagation is just a simple reshape,
and the ReLU backprop could be reused from the MLP. Lastly, the backpropagation for the convolutional
layer was calculated as follows: (%), =3, Zj(%)ijk and

dl_dw = dl_dy.reshape((3,-1)).dot(xcol) .reshape(w_conv.shape)

where xcol is the result from im2col. My CNN had a testing accuracy of 87%. Similar to the MLP, I think
this is due to hyperparameter tuning, but even after running a grid search overnight I could not get my CNN
to beat the MLP accuracy. The values I tested were [0.05, 0.1, 0.3] for the learning rate, [0.5, 0.75, 0.9] for
the decay rate, and [16, 32, 64, 128] for the batch sizes. Results of the my grid search are included in the
zip file submission.

