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Abstract— Relighting images and videos has proven to
be a very difficult task in the field of computer vision.
With augmented reality requiring objects placed in scenes
to match the scene’s lighting, and movies requiring
perfect lighting for each shot, the ability to change a
video’s lighting after it has been recorded is quickly
becoming a relevant task. Current relighting methods
have a heavy focus on faces, and fail to consider the
challenges that video relighting provides. In this paper
we demonstrate a method that takes advantage of scene
geometry by estimating the normals of an image, uses
existing networks to generate the reflectance image, and
utilize Lambertian shading to generate the image under
a new lighting condition. We utilize averaging between
frames to reduce flicker and enforce continuity. Although
our method produced higher error values than the base-
line, we believe that our method produces qualitatively
better results when evaluating geometrically consistent
highlights and the reduction of flicker in video.

I. INTRODUCTION

From augmented reality to cinematography to
self-driving cars, the ability to manipulate lighting
conditions is widely applicable in our high tech
lives. The rendering of real life objects in an
AR environment requires seamless integration into
the environment’s artificial illumination conditions
[29]. As this technology becomes more accessible
to the general public, the convenience of matching
a RGB image to any real life lighting is crucial
to AR development. Similarly, 3D compositing
in video can be greatly simplified by removing
the need for fixed illumination and multi-view
capturing [30]. In addition to these applications,
safety features in self-driving cars could benefit
from manipulating images taken in poor lighting
conditions. Since many of these use cases are in
the form of video, optimizing for frame by frame
continuity is a necessary step.

Current cutting edge computer vision relighting
methods focus primarily on relighting portrait style
images [22], [23], [24]. While these methods are
effective for close-up face portraits, their reliance

on facial geometry makes them not generalizable
to other images. Other approaches assume an
initial uniform lighting and apply new lighting
from a known, similar image [23]. We attempt
to generalize these relighting methods to objects
other than faces in an indoor setting.

Our method relies on extracting the geometry of
the scene through surface normals and estimating
scene lighting using existing networks. The surface
normals are essential information to relight a scene
as they inform us how each part of an object
interacts with environment lighting. We then use
a novel lighting environment to calculate new
shading, which can be applied to form a relit
image.

II. RELATED WORK

Facial Portrait Relighting: Previous attempts at
single-image relighting can be broken down into
three categories: image-to-image, geometry-based,
and non-geometry based. The first category, image-
to-image, uses style transfer networks such as
pix2pix to stylize the target image using features
from the source image [20], [21]. The advantage
of these methods is that estimation of lighting
conditions is not necessary since all relighting
occurs implicitly in the neural network. These
methods can generate images that have an overall
appearance of the correct lighting, but important
details (such as highlights on raised surfaces) are
missing because the models lack any physical
knowledge of the scene.

The next group of methods all attempt to con-
struct a physical model of the scene by estimating
the source and target lighting conditions. These
methods vary in whether they also consider the
geometry of the scene when applying the new
lighting. Sun et al. uses an encoder network to
estimate existing lighting conditions and a decoder
to generate a new image under novel lighting
conditions [22]. Peers et al. proposed a successful



video relighting method, but they assume uniform
lighting of the target image and also assume that
the normal of the source and target images are sim-
ilar [23]. Such assumptions fail when you do not
have complete control over scene lighting, which
is often the case for relighting applications. [24]
and [25] use multiple encoder networks to extract
the geometric information and prior lighting from
the scene, then use a decoder to relight the scene.
[24] focuses only on relighting faces, so they use
face pose to enhance their estimation of the scene
normals. Both networks can convincingly relight
the subject of a photo, but they fail at relighting the
background. They are also difficult to train, requir-
ing multiple neural networks and refinement steps
before an image can be generated. We propose to
use a simpler but more robust relighting method
that relies on intrinsic image decomposition, while
also considering scene geometry as in [24] and
[25].

Intrinsic Image Decomposition: Intrinsic image
decomposition consists of separating an image into
its reflectance (albedo) and shading image. The
reflectance image represents the true colors of the
scene objects and is known to be invariant to
illumination conditions. The shading image repre-
sents the lighting in a scene and can be applied to
the albedo to recreate the original image. Recent
work uses deep neural networks to estimate the
albedo and shading images from a single image
under unknown lighting conditions. In [33], the
authors propose the joint learning of networks
for the closely related tasks of intrinsic image
decomposition and semantic segmentation. Multi-
task learning forces the network to learn joint
features and therefore augmenting the performance
in all tasks. They found their networks outperforms
single-task networks in all metrics.

Existing Lighting Estimation: An estimation of
the existing lighting conditions is essential for
matching the lighting of a scene. Inverse rendering
estimations are the most common approach to
lighting calculations in part due to the difficulty
in collecting a dataset with controllable, ground
truth lighting. This approach was first suggested
by Marschner and Greenberg [3] and has been
applied in many inverse rendering methods since.
Ramamoorthi and Hanrahan extended inverse ren-

dering lighting estimations to a spherical harmonic
representation which conveys both the lighting and
reflectance [4]. In rendering applications, these
spherical harmonic representations are calculated
as an approximation from measured normals and
a low-pass filtered input signal [5], [6]. Yamaguchi
et al. used a deep learning approach with a set of
priors to find high quality facial reflectance using
an encoder/decoder on the extracted image texture
and visibility mask and also trained on synthet-
ically augmented data [7]. Yu and Smith applied
inverse rendering to a more general image, using a
self-supervised method to extract the normals and
albedo from an image and generate the lighting
and rendered image [8].

Depth and Normal Estimation: State-of-the art
methods use neural networks to predict depth and
normals, but this has some disadvantages. Using
CNNs lead to blurry object boundaries due to
decreased spatial resolution [12], inaccurate depth
of dynamic objects [13], and also depending on the
nature of the network, fine local features such as
cloth wrinkles are not captured [11]. The solutions
to these problems have been very specific and
include regressing over two different networks in
order to capture both global and local features,
using generative networks in order to learn a joint
distribution over depth and RGB images, and using
losses over multiple features of the image.

For our application, we use a multi-path refine-
ment network proposed by Lin et al. in order to
predict the depth and the normal of the image. This
network focuses on providing consistent estimates,
by using skip connections and chained pooling
over the earlier layers of the network, which helps
by not aggressively reducing the resolution of the
input image when compared to multiple layers of
pooling and convolution.

IIT. BASELINE METHOD

For our baseline we chose the state-of-the-art
relighting method by Zhou et al. [24]. For their
approach, Zhou et al. generated a dataset of faces
in different lightings from the CelebA dataset.
Using landmark detection and normal refinement
each face was relit under 7 lighting conditions.
They then trained an Hourglass encoder-decoder
network on the faces using a GAN loss. This



method struggles with background lighting and
displayed significant flickering when applied to
video.

To evaluate performance, we chose to use scale-
invariant mean squared error (Si-MSE), which is
defined as

Si-MSE — — min(I, — o * IF)?
N ] @

where I; and I} are the ground truth and relit
images, and N; is the number of pixels in the
image. Si-MSE is the usual evaluation method for
relighting applications because lighting intensity
is dependent only on camera exposure. By using
scale-invariant loss, we evaluate only the direc-
tionality of the lighting without the loss value
being affected by the image capture conditions.
We evaluated on the MultiPIE portrait relighting
dataset and the Multi-Illumination indoor scene
relighting dataset as well as our own collected
data. Using both datasets allows us to evaluate over
the primary use case of Zhou’s method and the
primary use case of our method.

IV. METHOD

We propose to break down the image relighting
problem into the following steps. First, the scene
normals are estimated using RefineNet. Flicker
is reduced in video by enforcing consistency be-
tween frames in our normal estimation. Then,
we estimate the reflectance image of the source
image through an intrinsic image decomposition
network. If the goal is to match the lighting of an
existing image, then the target lighting is extracted
from the reference image in a spherical harmonic
representation. Next, we calculate a new shading
image by using the scene object normals and
the target lighting. The target shading image and
source reflectance can then be combined to form
the final relit image.

Estimate Normals: Generation of a relit image
requires prior knowledge of the normals of the
scene. We relied on RefineNet [34] in order to
produce the normals directly from the input image.
From our testing, this network performed the best
out of the state-of-the-art methods. Accuracy in
this step is critical because inaccurate normals can
lead to non-uniform light fields and can produce
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Fig. 1: An outline of our proposed method

dark patches in the relit images. Figure 2a shows
the result of the normal prediction.

Normal Averaging + Warping: In order to re-
duce a potential flickering effect in video, we
use a rolling average of the normal estimation
to improve the stability. We take a series of the
previous four frames, and use homography to warp
previous viewpoints to the current perspective be-
fore averaging. Although a simple homography is
not able to account for large camera movements
in 3D scenes, we assume that the translation be-
tween video frames will be small, and therefore a
homography transformation is appropriate.

Generate Albedo: To obtain the reflectance
(albedo) image and the initial shading, we utilize
the existing method by [33] that can perform
intrinsic image decomposition. The network takes
in a given source image under unknown lighting
conditions, and outputs the predicted albedo image
and shading. The albedo image removes all exist-
ing lighting effects from the scene and represents
only the true color of each object in the scene.
We can then apply our own lighting to this albedo
image to generate a relit image. An example of the
predicted albedo image is shown in figure 2b.

Generate New Shading: We make the approxi-
mation that all scene lighting can be represented
using the shading image. The shading image ac-
counts for only diffuse lighting effects so we use
the Lambertian shading method to calculate the
lighting intensity for each pixel. The Lambertian
shading intensity is

Ld = kdf maX(O, n- 1)

where k; is the diffuse coefficient (assumed to
be 1 for our scenes), [ is the lighting intensity, n
is the surface normal, and 1 is the vector from the
surface to the light source. Because Lambertian
shading depends only on the object normals and



(a) Predicted Normals

(b) Predicted Albedo Image (c) Generated Shading Image

(d) Relit image

Fig. 2: Intermediate stages of our relighting process and the final relit image
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Fig. 3: Two example lighting spheres. Calculated (left) and
measured (right)

the lighting direction, we can easily compute this
function using the outputs of the previous steps.

In the case that the scene lighting is static
relative to the camera, we can pre-compute the
lighting intensity for any surface normal. This
calculation produces a lighting sphere, and when
relighting a scene we can use this sphere to look up
the necessary shading intensity for a given object
normal. This method has the benefit of allowing
us to pre-compute a lighting sphere for artificial
lighting situations, or a ground truth lighting en-
vironment can also be used, as measured by a
calibrated matte-gray sphere. The resulting lighting
spheres are shown in figure 3.

The shading look-up process corresponds to
mapping the surface normals to the appropriate
location on the sphere, given in pixel coordinates.
If n is a unit vector representing a surface normal
within the image, then the corresponding point on
the lighting sphere is

n0+1 77,1—|—1

5 = 255 * 1 =255 %

This operation maps n from [—1, 1] to [0,255],
which corresponds to a light map of size 256 X
256. Since only objects that face the camera are
visible in an image, the representation showing
half the lighting sphere is sufficient to relight the
entire image. Figure 2c shows what the shading
image looks like after all object normals have been
mapped to their relit lighting conditions.

Relight Frame: After the shading image has
been calculated, we can use it to generate the
final relit image. As in intrinsic image decompo-
sition, where the goal is to split an image into
its corresponding shading and albedo images, we
can create a relit image by simply multiplying the
albedo by our calculated shading image.

I=S*R

where R € [0,255] is the reflectance (albedo)
image and S € [0,1] is the shading image.! We
found that because the shading image has the sole
effect of dimming certain regions, the resulting
image is often too dark. Furthermore, the colors
in the predicted albedo image tend to be dull and
muted, so the colors of the relit image did not
appear to match the original. To solve both of
these issues, we used a two-stage normalization
step. First, we normalize the intensity of the shad-
ing image to match the shading predicted by the
image decomposition stage. Next, we normalize
the colors of our relit image to match the original
input. To normalize the image, we simply match
the mean and standard deviation of each channel’s
pixel values. These normalization steps have no
effect on the directionality of the scene lighting as
they are performed on the entire image. The final
result of our normalized relighting calculation is
shown in figure 2d.

Extract Target Lighting: This step only applies
if the goal is to match the lighting of a specific
reference image. For this method, refer to the
Appendix at the end of the paper.

V. DATA COLLECTION

Since our proposed method can be separated
into multiple independent steps, we collected data

'As presented in [32], this equation should really be I = (S *
R)+C, but the C term represents specular reflections and we focus
mainly on relighting diffuse objects.



Fig. 4: Qualitative results of our relighting method. Images are relit under seven new lighting conditions corresponding to

the first seven spherical harmonics

(a) Source

(b) Reference (target lighting)

(c) Zhou et al. (d) Proposed

Fig. 5: Qualitative comparison of our method to the Baseline. On this scene, the baseline achieved a Si-MSE of 0.01194,
averaged over 24 different lighting conditions. The proposed method achieved a Si-MSE of 0.02434.

to validate each stage. To test the robustness of
the normal estimation, we used a Microsoft Azure
Kinect sensor to gather RGB-D video of various
scenes. The ground truth scene normals can then be
calculated from the depth data to evaluate the pre-
diction accuracy. We also test our final relighting
results by collecting our own RGB videos under
ground truth lighting conditions. We used matte
grey spheres located in the image to record the
ground truth lighting and limit the image locations
to indoor areas to control the angle of the light
source.

VI. RESULTS

In order to qualitatively evaluate the appearance
of a scene as lighting directionality changes, we
generate the same scene under seven different
lighting conditions, which correspond to the first
seven spherical harmonics. These results are shown
in Figure 4. The candle holder in the first image,
shelf in the second, and vase in the third show
surface-based highlights and shadows that are con-
sistent with each lighting condition. From these
qualitative tests, we conclude that our method

excels at generating highlights and shadows ac-
cording to scene geometry.

We then qualitatively compared the proposed
method to the baseline using images such as in
Figure 5. The proposed method produced more
realistic lighting in the relit image than the base-
line, successfully illuminating the pillow’s rounded
shape while the baseline tends to apply a gradient
to the entire scene and struggle with creating real-
istic object highlights. From our qualitative tests,
the proposed method was also more successful
than the baseline in reducing frame by frame
flickering in video. Our video results are included
in the project video at the end of this paper.

MultiPIE | Multi Illumination
dataset dataset
Zhou et al. (baseline) 0.00590 0.01544
Proposed Method 0.05595 0.04976

TABLE I: Quantitative results on our two evaluation datasets

Next we gathered quantitative results on our
evaluation datasets, shown in Table I. The pro-
posed method performed worse than our base-
line on both the MultiPIE and Multi Illumination
datasets. However, in our qualitative evaluation of



images and videos we see more realistic shading
of the surface geometry in images relit using the
proposed method. We explore the reasons for this
discrepancy in the following section.

Discussion/Limitations: Overall the proposed
method generated a higher Si-MSE than the base-
line on both testing sets. Since the MultiPIE
dataset consists entirely of portrait style images
and was therefore more suited to the baseline’s
purpose, this result was unsurprising. Our normal
estimation network was not trained on faces and
therefore predicts inaccurate surface normals for
this case. The Multi Illumination dataset, however,
comprises of indoor scenes with controlled light-
ing, so we expected the our method to perform
better. We suspect the high error value is due to
the contrast that our method adds to the scene in
the form of brighter highlights and darker shadows.
The baseline tends to apply a more subtle lighting
gradient to the entire image, so the image contrast
is not significantly affected. Si-MSE is able to
ignore variations in exposure, but added contrast
is still penalized in the loss function.

Normal Estimation | Albedo Estimation

Mean L1 Loss 137.0 78.32

Standard Deviation 29.70 8.10

TABLE II: Evaluation of the normal and albedo estimation
against ground truth

We also identified the normal estimation as our
largest source of error. Using our data collected
with the Kinect sensor, we were able to extract
ground truth normals to compare with our esti-
mation. We used the dataset from Baslamisli et
al. in order to compare the albedo estimation to
the ground truth. In Table II we see the mean and
standard deviation of the L1 loss for the generated
normals and albedos compared to the ground truth.
We found the normals to have a significantly
higher loss, indicating a larger contribution to the
inaccuracies we were experiencing in our results.
The standard deviation of the normal images was
also higher, which indicates that performance is
highly dependent on the contents of a scene.

Our final relit videos appear to have much less
flicker than the baseline, but we still noticed a
slight flickering effect. Before applying the normal
averaging, the frame-to-frame standard deviation
of the normal estimation was 7.38. After applying

Fig. 6: Comparison of relighting performance using the
predicted scene normals (left) vs. ground truth normals
measured by the Microsoft Kinect (right)

smoothing this was reduced to 3.75. This indicates
that there is still some room for improvement,
because although many pixels may have stable nor-
mals, some (espicially those on textured surfaces
or near edges) can still have large frame-to-frame
variation. Despite the room for improvement, we
found that relit videos had significantly less flicker
when using the rolling average, and the warping
function eliminated any “trailing” effect that was
present when just averaging frames. This was
further supported by the improved video obtained
by applying the proposed method with the ground
truth normals rather than the generated ones, as
shown in figure 6.

VII. CONCLUSION

Our method for video relighting showed promis-
ing results. Although our quantitative error was
higher than the baseline, we believe that qualita-
tively our method produced more realistic lighting
with respect to the geometry of the scene, and
also produced clearer video results due to the
reduction in flicker. The main limitation in our
method was due to the estimated normals. With
the rapid development in the research of deep
learning depth and normal estimation from images,
we believe that our method will only become more
viable in the near future.

VIII. ROLE

Luis wrote code to generate the shading and relit
images from the surface normals and lighting
sphere. Integrated various portions to generate
dataset results. Wrote various sections of the paper.
Isaac wrote code to generate diffuse light maps
from environment maps. Collected both RGB and
RGB-D videos using the Azure Kinect. Wrote
various sections of the paper.



Helena wrote code to recolor images and smooth
video frames. Wrote various sections of the paper.
Aditya wrote code to estimate normals and shad-
ing images from pretrained models and setup the
video generation with by integrating various parts
of the pipeline. Wrote various sections of the

paper.
IX. COMMENTS FROM THE COMMITTEE

What is the cause of the remaining flicker in the
output video? Because we’re warping with only
a simple homography, we can only average over
around four frames before we start to see a trailing
effect from inaccurate warps. The remaining flicker
could be reduced further if we averaged over more
frames, but we attempted to find a suitable balance
between flicker and the trailing effect.

In the normal warping step, how can homog-
raphy account for large camera translations? We
attempt to answer this question in our methods
section. Essentially, because we only average over
four video frames, we assume the translations
aren’t going to be significant. We acknowledge
that more advanced 3D warping may give better
performance and allow us to average over ad-
ditional frames before trailing occurs, but such
methods would have significant runtime and cause
an unreasonably long video processing time.

X. LINKS TO CODE AND DATASET

Github: https://github.com/luigman/
CSCI5563ProjectSpring2021

Collected Dataset: https://bit.ly/3aSaBZb
Project Video: https://youtu.be/tt2wKUsNhy4
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XI. APPENDIX

Environment Map: —  Sample Range: —
Normal Direction: —  Samples of Env Map: ——
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Fig. 7: Environment map sampling process (left), an input
environment map (middle), and the corresponding diffuse
lighting sphere (right)

Extract Target Lighting: This step only applies
if the goal is to match the lighting of a specific
reference image. In this case, we must estimate
the existing illumination in the scene to use in our
relighting method. We used two different networks
to estimate the lighting conditions: InverseRender-
Net [8] and the encoder portion of DPR [24]. We
found that InverseRenderNet typically performed
better under more uniform illumination, and DPR
performed the best with directional light sources.
Because lighting estimation is expressed as spher-
ical harmonics, we convert to the corresponding
lighting sphere before integrating these target light-
ing conditions into our relighting pipeline.

An alternative method of extracting target light-
ing is to use environment maps. In order to get
a diffuse lighting sphere from an environment
map, we modified and implemented an existing
technique from de Vries [31]. This technique
involves taking an average of light values from
the environment map. To obtain what values to
average, we simulate the environment map as a
hemisphere surrounding the objects in the image.
Using the normals of these objects we can map
another hemisphere using each normal as a center
of the respective hemisphere. We then sample
values from the environment mapped hemisphere
using the normal hemisphere as a range to sample
from. A 2D representation of how the sampling
is structured from one normal can be seen in
figure 7. We weight each of these samples by their
angle in relation to the normal, and average the
environment map values. As one object may have
many of the same normals, we precompute all the
averaged light values and save them as a diffuse
lighting sphere. This can then be used as the target
lighting for our relighting algorithm.



