
CSCI 5563: Assignment #1

Panoramic Image Generation

1 Submission

• Assignment due: Feb 5 (11:55pm)

• Skeletal code and data can be downloaded from:
https://www-users.cs.umn.edu/~hspark/csci5563_S2021/hw1.zip.

• Individual assignment

• Up to 2 page summary write-up with resulting visualization (more than 2 page
assignment will be automatically returned.).

• Submission through Canvas.

• Use Python 3

• You will complete HW1.py including the following functions:

– MatchSIFT

– EstimateH

– EstimateR

– ConstructCylindricalCoord

– Projection

– WarpImage2Canvas

– UpdateCanvas

• DO NOT SUBMIT THE PROVIDED IMAGE DATA

• The function that does not comply with its specification will NOT BE GRADED.

• You are not allowed to use computer vision related package functions unless ex-
plicitly mentioned here. Please consult with TAs if you are not sure about the
list of allowed functions.

1

https://www-users.cs.umn.edu/~hspark/csci5563_S2021/hw1.zip

CSCI 5563: Assignment #1

Panoramic Image Generation

2 Overview

In this assignment, you will implement a method to create a panoramic image from a
set of images using image transformation as shown in Figure 1. The pseudo code can
be found in Algorithm 1.

(a) Input images

(b) Result panoramic image

Figure 1: (a) Given a set of images of pure rotation, you will implement an algorithm
(b) to automatically create a panoramic image.

Algorithm 1 Create Panoramic Image

1: Read all images.
2: R1 = I3 . Rotation for the first image.
3: for ith image in all images except the last do
4: Load consecutive images Ii and Ii+1.
5: Extract SIFT feature using OpenCV for each image
6: Find the matches between two images (x1 ↔ x2) . MatchSIFT

7: Estimate the homography between images using RANSAC . EstimateH

8: Compute the relative rotation matrix, i+1Ri . EstimateR

9: Compute the (i+ 1)th rotation matrix, Ri+1.
10: end for
11: Generate 3D points on the cylindrical surface . ConstructCylindricalCoord

12: for ith image in all images do
13: Project the 3D points to the ith camera plane . Projection

14: Warp the image to the cylindrical canvas. . WarpImage2Canvas

15: Update the canvas with the new warped image. . UpdateCanvas

16: end for

2

CSCI 5563: Assignment #1

Panoramic Image Generation

3 Sift Feature Extraction

(a) Image (b) SIFT descriptor

Figure 2: Given an image (a), you will extract SIFT features using OpenCV.

To stitch images, you need to match keypoints in images using image local descriptor.
You will use SIFT descriptor [1] to enable matching (Figure 2).

We will use OpenCV library for SIFT extraction given your images.

(Note) You will use this library only for SIFT feature extraction and its visualization.
All following visualizations and algorithms must be done by your code.

(Note) The function for SIFT feature extraction lie in the contrib module of OpenCV
library, so you need to install opencv-contrib-python package additionally. Also, in
newer versions of OpenCV, SIFT module is not available due to patent issue. But you
can reinstall opencv-python and opencv-contrib-python package to an earlier version
3.4.2.16 easily through following two command lines.

• pip3 install opencv-python==3.4.2.16

• pip3 install opencv-contrib-python==3.4.2.16

(SIFT visualization) Use OpenCV to visualize SIFT features with scale and orientation
as shown in Figure 2 (OpenCV may different colors to visualize). You may want to
follow the following tutorial:
https://docs.opencv.org/3.4.2/da/df5/tutorial_py_sift_intro.html

3

https://docs.opencv.org/3.4.2/da/df5/tutorial_py_sift_intro.html

CSCI 5563: Assignment #1

Panoramic Image Generation

4 SIFT Feature Matching

(a) Raw matches

(b) Filtered matches after ratio test

Figure 3: You will match points between the template and target image using SIFT
features.

The SIFT is composed of scale, orientation, and 128 dimensional local feature descriptor
(integer), f ∈ Z128. You will use the SIFT features to match between two images, I1
and I2. Use two sets of descriptors from the template and target, find the matches
using nearest neighbor with the ratio test. You may use NearestNeighbors function
imported from sklearn.neighbors (You can install sklearn package easily by “pip3
install -U scikit-learn”), or scipy.spatial.

def MatchSIFT(loc1, desc1, loc2, desc2):

...

return x1, x2

Input: loc1 ∈ Rn1×2 and desc1 ∈ Rn1×128 are keypoint locations and their SIFT
descriptors where n1 is the number of keypoints detected in image 1.
Output: x1, x2 ∈ Rn×2 are matches (correspondences) where n is the number of
matches.
Description: Each row of x1 and x2 contains the (x, y) coordinate of the point cor-
respondence in I1 ad I2, respectively. The matching function is supposed to filter the
correspondences based on bi-directional consistency and the ratio test.

(Note) You can only use SIFT module of OpenCV for the SIFT descriptor extraction.
Matching with the ratio test needs to be implemented by yourself.

4

CSCI 5563: Assignment #1

Panoramic Image Generation

5 Robust Homography Estimation

Figure 4: You will compute a homography using SIFT matches filtered by RANSAC.

Given the matches based on SIFT descriptors, you will compute a homography that
fits to the image transformation (i.e., pure rotation).

def EstimateH(x1, x2, ransac_n_iter, ransac_thr):

...

return H, inlier

Input: x1 ∈ Rn×2 and x2 ∈ Rn×2 are the set of correspondences. ransac_n_iter and
ransac_thr are the number of iterations and the error threshold for RANSAC.
Output: H ∈ R3×3 homogaphy and the set of inlier indices inlier ∈ Zk where k is
the number of inliers.
Description: The estimated homography will map x1 to x2, i.e., x2 = Hx1. You can
visualize the filtered inliers based on RANSAC as shown in Figure 4.

def EstimateR(H, K):

...

return R

Input: H ∈ R3×3 and K ∈ R3×3 are the estimated homography and camera intrinsic
parameter.
Output: R ∈ R3×3 is the relative rotation matrix (i.e., orthogonal matrix) from image
1 to image 2.
Description: The computed rotation matrix is the relative rotation between the image
1 and image 2. This rotation can be used to compute the absolute rotation of the (i+1)th

image given that of the ith image.

5

CSCI 5563: Assignment #1

Panoramic Image Generation

6 Coordinate Transformation

(,)u v

H

W

cH

2cW π≡

(,)w h

Source image Canvas image

Figure 5: You will find a mapping from the panoramic canvas to the image to transport
the pixel, i.e., (w, h)→ (u, v).

Camera

Cylindrical surface

f
φ

p

cH
O

Figure 6: Cylindrical
coordinate.

You will warp an image to the panoramic canvas that is the
unfolded surface of a cylinder where the width and height of the
canvas are Wc and Hc, respectively. A point in the cylindrical
surface can be parametrized by angle φ ∈ [0, 2π] and height
h as shown in Figure 6. Note that the angle ranging [0, 2π]
can be converted to the pixel coordinate ranging [0,Wc] using
φ = w 2π

Wc
(we assume the width of the canvas is equivalent to a

full rotation, i.e., Wc ≡ 2π. For the height of the canvas, it is
identical to the height of the source image, i.e., Hc = H.

To warp the image, you will apply the backward (inverse) warp-
ing scheme, i.e., you transport the pixel at the transformed co-
ordinate in the image to the canvas coordinate, (w, h)→ (u, v)
as shown in Figure 5. This mapping from the canvas to the source image can be derived
as a composition of mappings through a 3D point on the cylindrical surface (Figure 6):
a point in the canvas (w, h) is mapped to a 3D point p ∈ R3 on the surface of the
cylinder, and in turn, the 3D point is mapped to the point in the source image (u, v)
through projection, i.e., (φ, h)→ p→ (u, v).

Figure 6 defines the coordinate system. The camera center is located at the cylinder
center, O where the green and blue arrows indicate the y and z axes, respectively. We
assume the source image and canvas have the same focal length, i.e., the radius of the
cylinder is the focal length, (f = K11 where K is the intrinsic parameter of the source
image). Given the geometry, it is possible to derive the coordinate of the 3D point (red)
in terms of φ, h, f , Wc and Hc.

6

CSCI 5563: Assignment #1

Panoramic Image Generation

def ConstructCylindricalCoord(Wc, Hc, K):

...

return p

Input: Wc and Hc are width and height of the canvas. You will set the Wc to be (# of
images)×W/2 where W is the width of the image, and the Hc to be the height of the
image H. K is the intrinsic parameter of the source images.
Output: p ∈ RHc×Wc×3 is the 3D points corresponding to all pixels in the canvas.
Description: Given the size of the canvas, you can generate the canvas coordinates
using numpy.meshgrid, and express the corresponding 3D points using the geometry
in Figure 6.

def Projection(p, K, R, W, H):

...

return u, mask

Input: p ∈ RHc×Wc×3 is a set of 3D points that correspond to every pixel in the canvas
image. W and H are the source image size.
Output: u ∈ RHc×Wc×2 is the 2D projection of the 3D points p, and mask ∈ {0, 1}Hc×Wc
is the corresponding binary mask indicating valid pixels.
Description: If a point is valid, the corresponding mask entry is one, and zero other-
wise. A projected point is not valid:

• if the 3D point is behind the camera

• if the projected point is beyond the image boundary.

For instance, the black pixels in Figure 5 are the ones that are not valid for the first
source image.

def WarpImage2Canvas(image_i, u, mask_i):

...

return canvas_i

Input: image_i ∈ [0, 255]H×W×3 is the ith RGB image (uint8 format) with W width

and H height, u ∈ RHc×Wc×2 is the mapped 2D pixel locations in the source image for
pixel transport, and mask_i ∈ {0, 1}Hc×Wc is the valid pixel indicator.

Output: canvas_i ∈ [0, 255]Hc×Wc×3 is the canvas image generated by the ith source
image (uint8 format).
Description: You will use the mapping (w, h) → (u, v) to generate the ith canvas
image. A new canvas image can be created, and for each pixel location in the canvas
image, its pixel value can be copied from u that specifies the mapped location in the
source image. You would expect to generate a canvas image similar to Figure 5. You
may use scipy.interpolate for batch pixel warping with bilinear interpolation.

7

CSCI 5563: Assignment #1

Panoramic Image Generation

7 Update Canvas Image

Source image Canvas image

Figure 7: Given the previous canvas image and new canvas image, you composite them
using the valid pixels.

You will generate the composite of the canvas image, recursively. In Figure 7, given
the canvas image generated by the first image (Figure 5) and newly generated canvas
image from the new source image, the canvas image can be updated based on the valid
pixels.

def UpdateCanvas(canvas, canvas_i, mask_i):

...

return canvas

Input: canvas ∈ [0, 255]Hc×Wc×3 is the previously generated canvas, canvas_i ∈
[0, 255]Hc×Wc×3 is the newly generated canvas image from WarpImage2Canvas, and

mask_i ∈ {0, 1}Hc×Wc is the valid pixel indicator.

Output: canvas ∈ [0, 255]Hc×Wc×3 is the updated canvas image (uint8 format).
Description: This updating function composites two canvas images based on the valid
pixel indicator.

References

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, 2004.

8

	Submission
	Overview
	Sift Feature Extraction
	SIFT Feature Matching
	Robust Homography Estimation
	Coordinate Transformation
	Update Canvas Image

