
CSCI 5563: Assignment #4

Structure from Motion

1 Submission

• Assignment due: Apr 9 (11:55pm)

• Skeletal code and data can be downloaded from:
https://www-users.cs.umn.edu/~hspark/csci5563_S2021/hw4.zip.

• Individual assignment

• Up to 3 page summary write-up with resulting visualization (more than 3 page
assignment will be automatically returned.).

• Submission through Canvas.

• Use Python 3

• You will complete the following functions:

– hw4.py

– feature.py

∗ MatchSIFT

∗ EstimateE

∗ EstimateE_RANSAC

∗ BuildFeatureTrack

– camera_pose.py

∗ GetCameraPoseFromE

∗ Triangulation

∗ EvaluateCheirality

∗ EstimateCameraPose

– pnp.py

∗ PnP

∗ PnP_RANSAC

∗ ComputePoseJacobian

∗ PnP_nl

– reconstruction.py

∗ FindMissingReconstruction

∗ Triangulation_nl

∗ ComputePointJacobian

∗ SetupBundleAdjustment

∗ MeasureReprojection

1

https://www-users.cs.umn.edu/~hspark/csci5563_S2021/hw4.zip

CSCI 5563: Assignment #4

Structure from Motion

∗ UpdatePosePoint

∗ RunBundleAdjustment

– utils.py

∗ Quaternion2Rotation

∗ Rotation2Quaternion

• DO NOT SUBMIT THE PROVIDED IMAGE DATA

• The function that does not comply with its specification will NOT BE GRADED.

• You are not allowed to use computer vision related package functions unless ex-
plicitly mentioned here. Please consult with TAs if you are not sure about the
list of allowed functions.

• You can use the following script to install the dependencies:

pip install -r requirements.txt

• The visualization code for the final result is provided. We you finish and run the
pipeline, you will find output/cameras_i.ply and output/points_i.ply, which
are the camera coordinate frames and reconstructed points, respectively. You can
use MeshLab (https://www.meshlab.net) to open them.

2

https://www.meshlab.net

CSCI 5563: Assignment #4

Structure from Motion

2 Overview

Figure 1: You will implement structure from motion to reconstruct camera pose and
3D points.

In this assignment, you will use a set of images to reconstruct the 3D scene and cam-
era poses by implementing structure from motion algorithm. This will include feature
matching, camera pose estimation using fundamental matrix, camera registration, tri-
angulation, and bundle adjustment. A nonlinear optimization is always followed by
the initial estimate by linear least squares solution. The pseudo-code can be found in
Algorithm 1.

Algorithm 1 Structure from Motion

1: Build feature track . BuildFeatureTrack

2: Estimate first two camera poses . EstimateCameraPose

3: Initialize pose set P
4: for i = 2, · · · , N-1 do
5: Estimate new camera pose . PnP, PnP nl

6: P = P ∪ P_i

7: for j < i do
8: Find new points to reconstruct . FindMissingReconstruction

9: Triangulate point . Triangulation, Triangulation nl

10: Filter out point based on cheirality . EvaluateCheirality

11: Update 3D point
12: end for
13: Run bundle adjustment . RunBundleAdjustment

14: end for

3

CSCI 5563: Assignment #4

Structure from Motion

3 Building Feature Track

1
fx 2

fx 3
fx

2
kx 3

kx
Figure 2: Given a set of images, you will build a tensor track that specifies the matches
across views.

Given a set of images, Im ∈ RN×H×W×3, you will build a tensor track ∈ RN×F×2

that specifies the matches across all views where N is the number of images, and F
is the total number of features. Consider the f th feature point (x, y) in the ith image
is stored in track[i,f,:]. If the point is matched to a point in the jth image, the
correspondence is stored in track[j,f,:], i.e.,

track[j,f,:] =

{
xj if xi ↔ xj

−1 otherwise
, (1)

where xi ↔ xj indicates a point correspondence between two views.

For instance, in Figure 2, xf
1 is matched to xf

2 and xf
3 , and therefore, track[1,f,:]

= xf
1 , track[2,f,:] = xf

2 , and track[3,f,:] = xf
3 . On the other hand, xk

2 is
only matched to xk

3, and therefore, track[1,k,:] = -1, track[2,k,:] = xk
2, and

track[3,k,:] = xk
3. To build the track, you need to aggregate all pairwise matches.

The pseudo-code can be found in Algorithm 2

Algorithm 2 BuildFeatureTrack

1: for i = 0, · · · , N − 1 do
2: Extract SIFT descriptor of the ith image, Im[i]
3: end for
4: for i = 0, · · · , N − 1 do
5: Initialize track_i = -1N×F×2

6: for j = i+ 1, · · · , N − 1 do
7: Match features between the ith and jth images . MatchSIFT

8: Normalize coordinate by multiplying the inverse of intrinsics.
9: Find inliner matches using essential matrix . EstimateE RANSAC

10: Update track_i using the inlier matches.
11: end for
12: Remove features in track_i that have not been matched for i+ 1, · · · , N .
13: track = track ∪ track_i

14: end for

4

CSCI 5563: Assignment #4

Structure from Motion

Figure 3: You can visualize epipolar lines for each image to validate the fundamental
matrix.

def EstimateE(x1, x2):

...

return E

Input: x1 ∈ Rn×2 and x2 ∈ Rn×2 are the set of correspondences.
Output: E ∈ R3×3 is an essential matrix.
Description: The essential matrix must be a rank 2 matrix and its singular values
must be (1, 1, 0). Use SVD to set the singular values.

def EstimateE_RANSAC(x1, x2, ransac_n_iter, ransac_thr):

...

return E, inlier

Input: x1 ∈ Rn×2 and x2 ∈ Rn×2 are the set of correspondences. ransac_n_iter and
ransac_thr are the number of iterations and the error threshold for RANSAC.
Output: E ∈ R3×3 is an essential matrix, and inlier ∈ Zk is the set of inlier indices
where k is the number of inliers.
Description: You will implement 8-point algorithm (EstimateE) with RANSAC to
find robust estimate of E. You can visualize the filtered inliers based on RANSAC as
shown in Figure 3 (in order to visualize in pixel space, you have to unnormalize the
normalized coordinates by multiplying the intrinsic parameter.).

5

CSCI 5563: Assignment #4

Structure from Motion

def BuildFeatureTrack(Im, K):

...

return track

Input: Im ∈ RN×H×W×3 are the set of images where N is the number of images, and
H,W are height and width of images. K ∈ R3×3 is the intrisic parameter.
Output: track ∈ RN×F×2 is a feature tensor where F is the number of total features.
Note: track is expected to include only inlier matches. The coordinates of track

are expected to normalized by the intrinsic parameters K, which can improve numerical
stability. You will use SIFT matching function that you implemented for HW1:
def MatchSIFT(loc1, desc1, loc2, desc2):

...

return x1, x2, ind1

This SIFT matching includes ratio test and bidirectional consistency check. Unlike
HW1, you will return not only x1, x2 ∈ Rm×2 but also ind1 ∈ Zm, the indices of x1 in
loc1, i.e., loc1[ind1,:] = x1. m is the number of matches.

6

CSCI 5563: Assignment #4

Structure from Motion

4 Estimating Camera Pose

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.8

0.6

0.4

0.2

0

0.5

0.2

0

0

-0.2

-0.5

-0.4

-1

-0.6

-1.5 0.50
-0.5

0
0

0.2

-0.2

0.4

0 0.2 0.4 0.6 0.8 1
0.50-0.5-1

0.2

0

-0.2

-0.4

-1.5

-0.6

0

Figure 4: Four configurations of camera pose from a fundamental matrix.

Given an essential matrix, you can compute find four configurations of camera poses
as shown in Figure 4. Given the four camera configurations, you will find the best
configuration by taking into account cheirality, i.e., the triangulated point must be in
front of both cameras. Pseudo-code of pose estimation can be found in Algorithm 3

Algorithm 3 EstimateCameraPose

1: Compute essential matrix given tracks . EstimateE RANSAC

2: Estimate four configurations of poses . GetCameraPoseFromE

3: for i = 0, 1, 2, 3 do
4: Triangulate points using for each configuration . Triangulation

5: Evaluate cheirality for each configuration . EvaluateCheirality

6: end for

7

CSCI 5563: Assignment #4

Structure from Motion

100500

0

-20

-50

-40

-60

-80

0

0

-100

20

-50

40

60

0

80

50

40

20

806040

0

200-20

-20

-40-60-80 0

-40

-20

0

20

0 6040200-20-40-60-80

(a) nValid = 10 (b) nValid = 488

(c) nValid = 0 (d) nValid = 0

Figure 5: Visualization of camera configurations and their point clouds. (b) produces
the maximum valid points that satisfy cheirality condition.

def GetCameraPoseFromE(E):

...

return R_set, C_set

Input: E ∈ R3×3 is rank 2 essential matrix.
Output: R_set ∈ R4×3×3 is the set of four rotation matrices, and C_set ∈ R4×3 is the
set of four camera centers.
Description: Given an essential matrix, you can find four configurations of rotation
and camera center.

def Triangulation(P1, P2, track1, track2):

...

return X

Input: P1, P2 ∈ R3×4 are two camera projection matrices, and track1, track2 ∈ Rn×2

are point correspondences from the two poses. n is the number of 2D points.
Output: X ∈ Rn×3 is the set of 3D points. For the invalid point matches (track1=-1
or track2=-1), the corresponding row of X can be set to -1 to indicate invalid recon-
struction.
Description: You will use the linear triangulation method to triangulation the point.

8

CSCI 5563: Assignment #4

Structure from Motion

(a) Inlier matches

Top view Oblique view

(b) 3D camera pose

Figure 6: Camera pose estimation.

def EvaluateCheirality(P1, P2, X):

...

return valid_index

Input: P1, P2 ∈ R3×4 are two camera projection matrices, and X ∈ Rn×3 are the set of
3D points.
Output: valid_index ∈ {0, 1}n is the binary vector indicating the cheirality condi-
tion, i.e., one if the point is in front of both cameras, and zero otherwise. You may
visualize the camera and point cloud to validate cheirality as shown in Figure 5.

def EstimateCameraPose(track1, track2):

...

return R, C, X

Input: track1, track2 ∈ RF×2 are correspondences.
Output: R ∈ SO(3) is the rotation matrix (orthogonal matrix), C ∈ R3 is the camera
center, and X ∈ RF×3 is the set of 3D reconstructed points.
Description: You will return the best pose configuration of which the number of valid
3D points is maximum.

9

CSCI 5563: Assignment #4

Structure from Motion

5 Perspective-n-Point algorithm

-40

-20

0

20

(a) Front view

0

10

20

30

40

50

60

0 40200-20-40-60-80

(b) Top view

Figure 7: You will implement a perspective-n-point algorithm to register a new image
given 3D reconstruction of points.

Given 3D reconstruction of points, you will register a new image using 3D-2D cor-
respondences using a linear perspective-n-point algorithm with RANSAC. This linear
estimate will be refined by minimizing the reprojection error:

minimize
p

n∑
i

‖f(p,Xi)− bi‖2, (2)

where p is the vectorized camera pose made of the camera center and quaternion, i.e.,

p =
[
CT qT

]T
. f(p,Xi) is the projection of the ith 3D point Xi onto the camera p,

i.e.,

f(p,Xi) =

[
ui/wi

vi/wi

]
, where

 ui
vi
wi

 = R
[
I3 −C

] [Xi

1

]
(3)

where Xi ∈ R3 is the ith 3D point. bi is the ith 2D point from track, i.e., bi =[
xi yi

]T
.

Equation (2) can be minimized by updating the camera pose p using the Levenberg-
Marquardt method:

p = p + ∆p, where ∆p =

(
n∑
i

∂fi
∂p

T∂fi
∂p

+ λI

)−1 n∑
i

∂fi
∂p

T

(bi − fi) , (4)

where ∂fi
∂p
∈ R2×7 is the pose Jacobian for the ith point (we denote f(p,Xi) by fi by an

abuse of notation.). λ is the damping parameter, and you can try λ ∈ [0, 10].

10

CSCI 5563: Assignment #4

Structure from Motion

Measurement
Linear estimate (reproj: 0.199104)
Nonlinear estimate (reproj: 0.119272)

(a) Reprojection error

Measurement
Linear estimate (reproj: 0.199104)
Nonlinear estimate (reproj: 0.119272)

(b) Close up

Figure 8: Nonlinear refinement reduces the reprojection error (0.19→0.11).

def PnP(X, x):

...

return R, C

Input: X ∈ Rn×3 is the set of reconstructed 3D points, and x ∈ Rn×2 is the 2D points
of the new image where n is the number of points.
Output: R ∈ SO(3) is the rotation matrix (orthogonal matrix), C ∈ R3 is the camera
center.
Description: You will implement linear perspective-n-point algorithm.

def PnP_RANSAC(X, x, ransac_n_iter, ransac_thr):

...

return R, C, inlier

Input: X ∈ Rn×3 is the set of reconstructed 3D points, and x ∈ Rn×2 is the 2D points
of the new image where n is the number of points. ransac_n_iter and ransac_thr

are the number of iterations and threshold for RANSAC.
Output: R ∈ SO(3) is the rotation matrix (orthogonal matrix), C ∈ R3 is the camera
center, and inlier ∈ {0, 1}n×1 is indicator of inliers, i.e., one if the point is one of
inliers, and zero otherwise.
Description: You will estimate pose using PnP with RANSAC. An inlier is the one
that has a smaller error than the threshold and satisfies cheirality.

11

CSCI 5563: Assignment #4

Structure from Motion

def Rotation2Quaternion(R):

...

return q

Input: R ∈ SO(3) is rotation matrix.
Output: q ∈ R4 is unit quaternion.
Note: You need to normalize q before return.

def Quaternion2Rotation(q):

...

return R

Input: q ∈ R4 is unit quaternion.
Output: R ∈ SO(3) is rotation matrix.
Note: R must be an orthogonal matrix.

def ComputePoseJacobian(p, X):

...

return dfdp

Input: p ∈ R7 is the camera pose made of camera center (R3) and quaternion (R4).
X ∈ R3 is the 3D point.
Output: dfdp ∈ R2×7 is the pose Jacobian, i.e., ∂fi/∂p.

def PnP_nl(R, C, X, x):

...

return R_refined, C_refined

Input: R ∈ SO(3) and C ∈ R3 are the refined rotation and camera center by PnP.
X ∈ Rn×3 is the 3D points, and x ∈ Rn×3 is the 2D point where n is the number of
points.
Output: R_refined ∈ SO(3) and C_refined ∈ R3 are the refined rotation and camera
center via nonlinear optimization.
Note: You will use ComputePoseJacobian to update the pose. The pose update via
Equation (6) does not enforce the quaternion to be unit length. After update, you
have to enforce the unit length, i.e., q = q

‖q‖ . After optimization, you can visualize the

reduction of reprojection error (0.19→0.11) as shown in Figure 8.

12

CSCI 5563: Assignment #4

Structure from Motion

6 Reconstructing 3D Points

Given a newly registered image, you will reconstruct 3D points that have not recon-
structed yet. You find the points that will be newly added and reconstruct the points
using Triangulation. These linearly estimated points will be refined by minimizing
the reprojection error for each point:

minimize
Xj

2∑
k=1

‖f(pk,Xj)− bk,j‖2, (5)

where Xj is the jth 3D point, pk is the kth camera pose for triangulation, and bk,j is
the jth 2D point on the kth image from track. We consider k = 1, 2 where a point is
triangulated by two camera poses.

Equation (5) can be minimized by updating the camera pose X using the Levenberg-
Marquardt method:

Xj = Xj + ∆Xj where ∆Xj =
2∑

k=1

(
∂fk,j
∂X

T∂fk,j
∂X

+ λI

)−1
∂fk,j
∂X

T

(bk,j − fk,j) , (6)

where
∂fk,j
∂X
∈ R2×3 is the point Jacobian for the jth point (we denote f(pk,Xj) by fk,j

by an abuse of notation.). λ is the damping parameter, and you can try λ ∈ [0, 10].

13

CSCI 5563: Assignment #4

Structure from Motion

def FindMissingReconstruction(X, track_i):

...

return new_point

Input: X ∈ RF×3 is the 3D points, and track_i ∈ RF×2 is the 2D points of the newly
registered image.
Output: new_point ∈ {0, 1}F×1 is a set of indicators that indicate new points.
Note: The new points are the points that are valid for the new image and are not
reconstructed yet, i.e.,

new pointi =

{
1 if Xi 6= −1, track ii 6= −1
0 otherwise

, (7)

where Xi and track ii are the ith 3D and 2D points.

def ComputePointJacobian(X, p):

...

return dfdX

Input: X ∈ R3 is the 3D point, and p ∈ R7 is the camera pose made of camera center
(R3) and quaternion (R4).
Output: dfdX ∈ R2×3 is the point Jacobian, i.e., ∂fk,j/∂X.

def Triangulation_nl(X, P1, P2, x1, x2):

...

return X_new

Input: X ∈ Rn×3 is 3D points, P1, P2 ∈ R3×4 are two camera projection matrices, and
x1, x2 ∈ Rn×2 are point correspondences from the two poses.
Output: X_new ∈ Rn×3 is the set of refined 3D points.

14

CSCI 5563: Assignment #4

Structure from Motion

7 Running Bundle Adjustment

Top view Oblique view
Figure 9: You will reconstruct all images and 3D points using structure from motion.

You will use a nonlinear least squares optimization to refine the camera pose and
reconstructed points all together by minimizing the reprojection error:

minimize
{pk}{Xj}

K∑
k=1

J∑
j=1

sk,j‖f(pk,Xj)− bk,j‖2, (8)

where K is the number of images, and J is the number of 3D points. sk,j = {0, 1} is
the visibility indicator, i.e., one if the jth point is visible to the kth camera, and zero
otherwise:

sk,j =

{
1 if bk,j 6= −1
0 otherwise.

(9)

You will use scipy.optimize.least squares to optimize Equation (8). The pseudo-
code is found in Algorithm 4.

Algorithm 4 RunBundleAdjustment

1: Setup bundle adjustment. . SetupBundleAdjustment

2: Run sparse bundle adjustment.
3: Update the poses and 3D points. . UpdatePosePoint

15

CSCI 5563: Assignment #4

Structure from Motion

def SetupBundleAdjustment(P, X, track):

...

return z, b, S, camera_index, point_index

Input: P ∈ RK×3×4 is the set of reconstructed camera poses, X ∈ RJ×3 is the set of
reconstructed 3D points, track ∈ RK×J×2 is the tracks for the reconstructed cameras.
Output: z ∈ R7K+3J is the optimization variable that is made of all camera poses and
3D points, i.e.,

z =

p1
...

pK

X1
...

XF

(10)

where pi =
[
CT

i qT
i

]T ∈ R7 is the ith camera pose (center and quaternion), and
Xj ∈ R3 is the jth 3D point.

b ∈ R2M is the 2D points in track where M is the number of 2D visible points, i.e.,
not all points in track are visible (only sk,j = 1 should be included.).

S ∈ {0, 1}2M×(7K+3J) is a sparse indicator matrix that indicates the locations of Jaco-
bian computation. Jacobian is only valid when sk,j = 1. Consider the mth measurement
made by the projection of the jth 3D point (Xj) onto the kth camera (pk) in Equa-
tion (8). The pose Jacobian entries correspond to S[2m:2m+1, 7k:7k+6]=1 and point
Jacobian entries are S[2m:2m+1, 7K+3*j:7K+3*j+2]=1.

Note: For the first two camera poses, you do not want to update through the Jacobian,
i.e., S[2m:2m+1, 7k:7k+6]=0 for m=1,2.

camera_index ∈ ZM specifies the index of camera for each measurement, i.e., camera_index=k,
and point_index ∈ ZM specifies the index of 3D point for each measurement, i.e.,
point_index=j.

16

CSCI 5563: Assignment #4

Structure from Motion

def MeasureReprojection(z, b, n_cameras, n_points, camera_index, point_index):

...

return err

Input: z ∈ R21KJ is the optimization variable, b ∈ R2M is the 2D measured points,
n_cameras and n_points are the number of cameras and 3D points, respectively, and
camera_index, point_index ∈ ZM are the indices of camera and 3D point.
Output: err ∈ R2M is the reprojection error, i.e., the aggregate of all reprojection
errors.
Description: This function can be called during optimization (least squares) to
evaluate the reprojection error, e.g.,

res = least_squares(MeasureReprojection, z0, jac_sparsity=S, verbose=2,

x_scale=’jac’, ftol=1e-4, method=’trf’,

args=(b, n_cameras, n_points,

camera_index, point_index))

def UpdatePosePoint(z, n_cameras, n_points):

...

return P_new, X_new

Input: z ∈ R21KJ is the optimization variable, and n_cameras and n_points are the
number of cameras and 3D points, respectively.
Output: P_new ∈ RK×3×4 is the set of refined camera poses, X_new ∈ RJ×3 is the
refined 3D points.

def RunBundleAdjustment(P, X, track):

...

return P_new, X_new

Input: P ∈ RK×3×4 is the set of reconstructed camera poses, X ∈ RJ×3 is the set of
reconstructed 3D points, track ∈ RK×J×2 is the tracks for the reconstructed cameras.
Output: P_new ∈ RK×3×4 is the set of refined camera poses, X_new ∈ RJ×3 is the re-
fined 3D points. You can use MeasureReprojection to measure the reprojection error
before and after bundle adjustment to see the error reduction.

17

	Submission
	Overview
	Building Feature Track
	Estimating Camera Pose
	Perspective-n-Point algorithm
	Reconstructing 3D Points
	Running Bundle Adjustment

