
CSci 5563 Assignment 4

Luis Guzman

Sunday April 11, 2021

This assignment consists of a full implementation of Structure from Motion (SfM), which reconstructs
a scene in 3D using images taken from multiple camera poses. The SfM algorithm can be broken down
into five main parts: BuildFeatureTrack, EstimateCameraPose, (Nonlinear) Perspective-n-Point, (Nonlinear)
Triangulation, and Bundle Adjustment. The main algorithm and the BuildFeatureTrack step are shown on
the right.

The goal of BuildFeatureTrack is to match keypoints between
each pair of images. Keypoints are extracted from every image using
the SIFT implementation in OpenCV. Then, each keypoint in image
i is compared against the keypoints in image j to find a match. The
ratio test is used to ensure that only robust matches are considered.
The matched points are then used to estimate the Essential Matrix of
the two cameras. The Essential Matrix maps a 2D pixel coordinate
from one image to the other such that xTEx′ = 0. The Essential
Matrix can be estimated via RANSAC and the 8-point algorithm to
filter out any outliers:

The first equation is solved by using the SVD to find the null space, and then the second equation
performs SVD cleanup on the result. After removing outlier points, the matched points are then stored in
track. track is a tensor of shape (N ×F × 2) where N is the number of cameras and F is the total number
of matched features. If a feature f appears in image n, the track[n,f,:] stores that feature’s normalized
pixel coordinate. Otherwise, −1 is stored instead to indicate an invalid point.

Once track has been built, we can use EstimateCameraPose to find the camera poses of the first and
second cameras in the sequence. The first camera is assumed to be an identity rotation and zero translation.
The camera pose of the second camera can be extracted from the essential matrix as follows:

This results in four possible camera configurations from a single essential matrix. Before determining the
ideal camera pose, we first triangulate every keypoint in the image by using epipolar geometry to determine
depth. The equation is

1

Figure 1: The four poses for a given essential ma-
trix. In this case, pose 1 and 2 had 0 points pass
the Cheirality test, pose 3 had 315 points pass the
test, and pose 4 had 12 points pass. Pose 3 was
selected as the optimal pose.

where u and v are pixel coordinates, Pi = [R t] is the pro-
jection matrix for the ith image, and X is the 3D point we’d
like to solve for. The u and v matrices are in skew-symmetric
form. Because each skew symmetric matrix is rank 2, I remove
the last row of each one to form a well-conditioned problem.
This equation can be solved using the SVD to find the null
space.

The optimal camera pose is determined by the Cheirality
condition r3(X−C) > 0 where C = −Rt and r3 is the last
row of R. This expression counts the number of points that
appear in front of both cameras. Figure 1 visualizes these four
different poses.

In the next step, I iteratively add new images to the recon-
struction and ensure that all new and old points are consis-
tent. The PnP algorithm estimates a new camera pose given
3D to 2D correspondences. Because we already have triangu-
lated points for the first two images, many of those same points
can be used to localize the camera in the third image. The PnP
algorithm solves for a camera as follows:

Note that because pixel coordinates are already normalized, the K matrix is not needed here. The above
equations result in a linear approximation for the camera pose. A better estimate can be found by using

nonlinear optimization to minimize the reprojection error . The algorithm for minimizing
this error is given in the ”Nonlinear Camera Pose Refinement” in Figure 3. The objective is minimized using
the Levenberg-Marquardt method:

Figure 2: Results of the PnP step. The nonlinear refinement decreased reprojection error from 0.0095 to 0.0074.

Once the new camera pose is known, I use FindMissingReconstruction to determine if there exist any
new points that haven’t been reconstructed yet. For all these new points, I run Triangulation on them for
every previous camera. The 3D points can also be improved with nonlinear estimation, so I use the same
method to minimize reprojection error for the reconstruction

2

Lastly, I filter the newly reconstructed points using the same Cheirality condition as before. This ensures
that the points are a correct match before I add them to the permanent set of 3D points. I found that even
with the Cheirality condition, I had some mismatched points entering the X list. To fix this issue, I added
an additional filter that required ||u−PX|| < ε, exactly the same condition that I enforced in my RANSAC
functions.

Figure 3: Nonlinear estimation algorithms

Figure 4: The Sparsity ma-
trix of the Bundle Adjust-
ment Jacobian. Non zero
entries exist in the first few
columns, which correspond
to the pose Jacobian, and
along the diagonal, which
correspond to the point Ja-
cobian

The last step is to run Bundle Adjustment, which minimizes the reporojection
error for all camera poses and reconstructed points all at once. For this portion,
I used scipy.optimize.least squares to simplify the optimization. In Setup-
BundleAdjustment, I create an optimization variable, which consists of all camera
poses and 3D points. I also create a sparsity matrix, which indicates to Scipy
which elements of the Jacobian are equal to zero. As can be seen in Figure 4, the
Jacobian is highly sparse, which simplifies the optimization. Figure 5 shows the
results of the bundle adjustment step.

Figure 5: Results of the bundle adjustment step. The top figure shows a typical case where
the reprojection error goes from 0.079 to 0.070. The bottom image shows a case where

there was large error due to PnP RANSAC and Triangulation. Bundle Adustment fixed the
incorrect points and decreased the error from 42.6 to 0.359.

My final results are shown in Figure 6. The right wall of Keller hall is clearly
visible, and there are clusters of points where the left and front faces of the building
would be. In the front view, you can see that all five cameras have been localized
correctly.

Figure 6: The top view (left) and front view (right) of my final 3D reconstruction.

I believe there are still some improvements to be made on my implementation. For example, the RANSAC
method in EstimateCameraPose does not always give an accurate camera pose, so the program must some-
times be restarted to fix the issue. I attempted to adjust the RANSAC parameters to fix this, but I could
not seem to find an entirely stable combination. Also, my 3D reconstruction isn’t perfect–I’d like to see more
defined walls and edges. I believe this is due to a combination of errors from PnP and Triangulation that
bundle adjustment could not account for. If given more time, I’d like to review these functions for errors.

3

