
CSCI 5563: Assignment #5

Depth Fusion

1 Submission

• Assignment due: May 7 (11:55pm)

• Skeletal code and data can be downloaded from:
https://www-users.cs.umn.edu/~hspark/csci5563_S2021/hw5.zip.

• Individual assignment

• Up to 3 page summary write-up with resulting visualization (more than 3 page
assignment will be automatically returned.).

• Submission through Canvas.

• Use Python 3

• You will complete HW5.py including the following functions:

– Get3D

– CreateTSDF

– ImageRays.cast

– ComputeTSDFNormal

– FindCorrespondence

– SolveForPose

– FuseTSDF

• DO NOT SUBMIT THE PROVIDED IMAGE DATA

• The function that does not comply with its specification will NOT BE GRADED.

• You are not allowed to use computer vision related package functions unless ex-
plicitly mentioned here. Please consult with TAs if you are not sure about the
list of allowed functions.

1

https://www-users.cs.umn.edu/~hspark/csci5563_S2021/hw5.zip

CSCI 5563: Assignment #5

Depth Fusion

2 Overview

In this assignment, you will implement a method to create a coherent 3D geometry in
the form of Truncated Sign Distance Function (TSDF) by fusing a sequence of depth
images as shown in Figure 1. The pseudo code can be found in Algorithm 1.

(a) Input depth images (b) Depth fusion

Figure 1: Given (a) the input depth images (the darker, the closer), you will fuse them
to create (b) a coherent TSDF.

Algorithm 1 Depth Fusion

1: Load the first depth image.
2: T = I4 . Initialization transformation
3: Initialize TSDF using the first depth image. . CreateTSDF

4: for ith image in all depth images except for the first image do
5: Initialize current transformation Tcur = T
6: Get camera extrinsic from Tcur

7: Predict points from the TSDF by ray casting . ImageRays.cast

8: Predict normals from the predicted points . ComputeTSDFNormal

9: Load the ith depth image
10: Compute 3D points and surface normals. . Get3D

11: for jth iteration < niter do
12: Find correspondences . FindCorrespondence

13: Compute ∆T . SolveForPose

14: Update Tcurr and make sure det(Rcurr) = 1
15: end for
16: Update transformation T = Tcurr

17: Create new TSDF for the ith depth with T . CreateTSDF

18: Fuse TSDFs . FuseTSDF

19: end for

2

CSCI 5563: Assignment #5

Depth Fusion

3 3D Points and Surface Normals from Depth

(a) Image (b) Depth (c) 3D point (d) Surface normal

Figure 2: Given a depth image (b), you will generate 3D points and surface normal
using inverse projection.

Given a depth image, you will reconstruct 3D points and surface normals for all pixels.
Given a pixel location u = (u, v), and its depth d, the 3D point x ∈ R3 can be computed
using inverse projection:

pc(u, v) = pc(u) = dK−1

uv
1

 , (1)

where K is the intrinsic parameter. Note that pc is represented in the camera coordinate
system.

The surface normal of pc can be derived by taking spatial derivative of the 3D point:

nc(u) =
(pc(u+ 1, v)− pc(u, v))× (pc(u, v + 1)− pc(u, v))

‖(pc(u+ 1, v)− pc(u, v))× (pc(u, v + 1)− pc(u, v))‖
. (2)

Note that the surface normal is an unit vector where it needs to be normalized by its
magnitude.

def Get3D(depth, K):

...

return point, normal

Input: depth ∈ RH×W
+ is the depth image with the height H and width W , and

K ∈ R3×3 is the intrinsic parameter.
Output: point ∈ R3×H×W and normal ∈ R3×H×W are points and surface normals for
all coordinates in the depth image.
Note: You can use the provided function SavePointNormal(filename, point, normal)

to save the points and normals into a *.ply file that can be visualized using MeshLab

software as shown in Figure 2(c). The point color encodes the surface normal.

3

CSCI 5563: Assignment #5

Depth Fusion

4 TSDF from Depths

Space physical length

Voxel size, l

N: # of voxel/dim

World coor.

Voxel origin offset, vo

L

Camera coor.

T
Voxel at (i,j,k)
v(i,j,k)

(a) Voxel geometry

Voxel grid

3D points

Camera
Oblique view Top view

(b) Voxel visualization

Figure 3: Given a depth image (b), you will generate 3D points and surface normal
using inverse projection.

Truncated sign distance field (TSDF) can be constructed by using a depth image and

its transformation T =

[
R t
0 1

]
. TSDF can be defined over the 3D cubic regular grid

with the physical size of the space, L, the number of voxels per dimension, N , and
voxel origin offset, vo. The location of the (i, j, k)th cell in the world coordinate system,
vw(i, j, k) ∈ R3 can be written as:

vw(i, j, k) = vo + l

 ij
k

 , (3)

where l = L/N is the size of each voxel.

The sign distance field SDF at (i, j, k) is defined as:

SDF (i, j, k) = ‖pc(ui,j,k)‖ − ‖vc(i, j, k)‖, (4)

where vc(i, j, k) is the location of the cell in the camera coordinate system, i.e., vw =
Rvc + t where T is the transform that takes a point in the camera coordinate system
to the world coordinate system, i.e., T is the inverse of camera extrinsic parameter
(Rc,C) that transforms a point in the world coordinate to the camera coordinate. The
subscript w and c indicate the world and camera coordinate systems, respectively.

pc(ui,j,k) is the 3D point that is reconstructed by the depth image at the projected
location of vc as shown in Figure 4(a). vc is projected onto the camera plane to
form 2d projection ui,j,k, and the point pc(ui,j,k) can be reconstructed using its depth
(Equation (1)).

4

CSCI 5563: Assignment #5

Depth Fusion

Camera plane

3D surface

Voxel location, vc

Surface point, p(ui,j,k)

Projection of voxel, ui,j,k

||p(ui,j,k)||

||vc||

(a) 3D geometry of SDF

3D surface

Camera

0.8

-0.9

1

1
-0.6

Truncation boundary

(b) TSDF in 2D (c) TSDF visualization

Figure 4: You will generate TSDF value and weight for each voxel.

You can construct the truncated signed distance field F from SDF :

F (i, j, k) =

{
1 if |SDF (i, j, k)| > γ
SDF (i, j, k)/γ otherwise

, (5)

where γ is the truncation threshold that defines the boundary of truncation as shown in
Figure 4(b). The value of TSDF is positive in front of the surface, and negative behind
the surface up to the truncation boundary.

In addition to the TSDF value, its weight needs to be set:

W (i, j, k) =

{
1 if |F (i, j, k)| < 1
0 otherwise.

(6)

This weight of the TSDF will be used for fusing two TSDFs.

def CreateTSDF(depth, T, K, voxel_param):

...

return tsdf

Input: depth ∈ RH×W
+ is the depth image with the height H and width W , K ∈ R3×3 is

the intrinsic parameter, T ∈ R4×4 is the transformation from the camera coordinate to
the world coordinate, and voxel_param is a class instance that include the parameters
of voxels (e.g., L, N , vo, and γ). See VoxelParam class definition.
Output: tsdf is a class instance for TSDF that includes the values and weights.
tsdf.value ∈ RN×N×N is the value of TSDF, and tsdf.weight ∈ RN×N×N is the
weight of the TSDF.
Note: (1) The VoxelParam and TSDF classes are provided in the tsdf.py. (2) You
can use the provided function SaveTSDFtoMesh(filename, tsdf) to save the mesh
generated by Marching Cubes algorithm [1] into a *.ply file that can be visualized
using MeshLab software as shown in Figure 4(c). This function is located in utils.py.

5

CSCI 5563: Assignment #5

Depth Fusion

5 Surface Prediction

3D surface

Camera

C

irPoint on ray

d
jr 1j+r

p̂

0.3
-0.50.0

(a) Ray casting (b) Depth prediction (c) Normal prediction

Figure 5: Given a TSDF and camera pose, you will predict the 3D points and surface
normals using ray casting.

Given a TSDF and camera pose, you will predict the 3D points and surface normals
using ray casting. Consider a ray emitted from a camera with the transformation matrix
T =

[
R t

]
, i.e., that brings camera to world coordinate. Evenly spaced points on the

ray can be written in the world coordinate as:

ri = t + λiRd, (7)

where ri and λi are the ith point along the ray and its magnitude, and d is the direction
of the ray as shown in Figure 5(a), i.e., d = K−1ũ

‖K−1ũ‖ . Note that d is a unit vector.

The surface is located at the zero cross of TSDF value, i.e., there exist consecutive
sampled points that change the sign of their TSDF values, i.e., ∃ j s.t. F (rj) >
0, F (rj+1) ≤ 0. By abuse of notation, we denote the TSDF value sampled at r by F (r).
The predicted surface p̂ at zero crossing can be computed by:

p̂w(u) =

p̂x

p̂y

p̂z

 = − F (rj)

F (rj+1)− F (rj)
(rj+1 − rj) + rj. (8)

Cast rays are not valid if there is no zero crossing.

6

CSCI 5563: Assignment #5

Depth Fusion

Given the estimated surface, its surface normal can be derived by taking spatial deriva-
tive of the TSDF values:

n̂w(p̂) =

n̂x

n̂y

n̂z

 , (9)

where

n̂x =
∂F

∂x
=

F (p̂x + 1, p̂y, p̂z)− F (p̂x, p̂y, p̂z)

‖F (p̂x + 1, p̂y, p̂z)− F (p̂x, p̂y, p̂z)‖+ ε
, (10)

where 0 < ε � 1 is a constant that ensure avoiding zero division, e.g., ε = 10−5. The
same partial derivative applies for the y and z directions.

class ImageRays:

def __init__(self, K, voxel_param, im_size)

self.rays_d = ...

self.lambda_step = ...

Input: K ∈ R3×3 is the camera intrinsic parameter, and T ∈ R4×4 is the matrix that
transforms camera to world coordinate. voxel_param is an instance of VoxelParams.
im_size = (H,W) is the size of depth image.
Class parameters: self.rays_d ∈ R3×H×W is the ray bundle from an image w.r.t
the camera coordinate, and self.lambda_step is the number of step to cast each ray,
computed based on voxel_param.
Note: The __init__ function of ImageRays class is provided in the file rays.py.

def ImageRays.cast(self, T, voxel_param, tsdf):

...

return point_pred, validity

Input: T ∈ R4×4 is the transformation from the camera coordinate to the world co-
ordinate, voxel_param is an instance of VoxelParams, and tsdf is a truncated signed
distance function.
Output: point_pred ∈ R3×H×W is the predicted points, and validity ∈ {0, 1}H×W
is its validity where one if valid, and zero otherwise.
Note: You may use python built-in functions for 3D interpolation, e.g.,
scipy.ndimage.map_coordinates. The predicted points can be projected back to the
camera plane to visualize the depth prediction as shown in Figure 5(b).

def ComputeTSDFNormal(point, tsdf, voxel_param):

...

return normal

Input: point ∈ R3×H×W is the predicted points from the TSDF values.
Output: normal ∈ R3×H×W is the predicted normal.

7

CSCI 5563: Assignment #5

Depth Fusion

Note: The normal vector must be a unit vector. The predicted normals can be pro-
jected back to the camera plane to visualize the normal prediction as shown in Fig-
ure 5(c).

8

CSCI 5563: Assignment #5

Depth Fusion

6 Projective Correspondence Estimation

Ref. camera

iC 3D predicted surface

Target camera

+1iC

ˆ wp

Measured surface
from target camera

û
()ˆwp u

via ray casting

(a) Geometry of correspondence (b) Oblique view (c) Side view

Figure 6: Correspondence between the predicted (red) and measured (blue) points are
visualized.

Given surface prediction, you will estimate the projective correspondences between the
predicted points and measured points for pose estimation. The predicted points in the
world coordinate system can be computed by the ray casting from the reference camera
(ith time instant) described in Section 5. You will find the matching points in the target
camera ((i+ 1)th time instant) by projecting onto the target camera pose, i.e.,

pw(û) = Rpc(û) + t, nw(û) = Rnc(û), (11)

where pw and nw are points and normals represented in the world coordinate system. R
and t are the transformation of the target camera. û is the projection of the predicted
points (Figure 6(a)):

λ

[
û
1

]
= KRc(p̂w −C). (12)

Among the correspondences pw(û) ↔ p̂w, you will filter out the ones that are too far
or with different surface normals:{

‖p̂w − pw(û)‖ < εp
p̂T
wpw(û) > cos(εn)

(13)

In practice, you also need to filter out the projections beyond the image boundary and
the 3D points behind the target camera.

9

CSCI 5563: Assignment #5

Depth Fusion

def FindCorrespondence(T, p_pred, n_pred, valid_rays, p, n, K, e_p, e_n):

...

return p_pred_corr, n_pred_corr, p_corr, n_corr

Input: T ∈ R4×4 transforms a 3D point in the camera coordinate to the world coordi-
nate, p_pred, n_pred ∈ R3×H×W are points and normals in the world coordinate system
predicted from the reference camera using ray casting, and valid_rays ∈ 0, 1H×W indi-
cates the validity of predictions. p, n ∈ R3×H×W are the points and normals in the target
camera coordinate system, K is the camera intrinsic parameter, and e_p, e_n ∈ R+ are
the error thresholds for point and normal, respectively, in Equation (13).
Output: p_pred_corr, p_corr, n_pred_corr, n_corr ∈ R3×m are m correspondences,
i.e., each row in p_pred_corr and p_corr specifies point correspondence, and each row
in n_pred_corr and n_corr specifies normal correspondence.
Note: You can use the provided function SavePointDepth(filename, point) to save
the point cloud and visualize the correspondences in MeshLab software as shown in Fig-
ure 6(b) and 6(c). This function is located in utils.py.

10

CSCI 5563: Assignment #5

Depth Fusion

7 Pose Estimation

3D predicted surface

ˆ wp

()ˆwp u Tangential plane

ˆ wn

Point-plane distance

Figure 7: Point-to-plane
error

Using the correspondences, you will solve for the target
camera pose by minimizing the plane to point distance:

minimize
R,t

m∑
i=1

| (pw(ûi)− p̂i)
T n̂i|

=minimize
R,t

m∑
i=1

| (Rpc(ûi) + t− p̂i)
T n̂i|, (14)

where | (pw(ûi)− p̂i)
T n̂i| measures the point-to-plane dis-

tance as shown in Figure 7, and m is the number of corre-
spondences.

By linearizing Equation (14), you can derive a pose update equation:

T = (∆T)T where ∆T =

1 α −γ tx
−α 1 β ty
γ −β 1 tz
0 0 0 1

 , (15)

where the update parameters (β, γ, α, tx, ty, tz) can be computed by solving the following
linear system:

 n̂T
1

[
[pw(û1)]× I3

]
...

n̂T
m

[
[pw(ûm)]× I3

]

β
γ
α
tx
ty
tz

 =

 n̂T
1 (p̂1 − pw(û1))

...
n̂T
m (p̂m − pw(ûm))

 . (16)

11

CSCI 5563: Assignment #5

Depth Fusion

(a) First iteration

(b) Third iteration

Figure 8: Blue: predicted points p̂; Red: measured points pw; Green: transformed
measured points (∆Tpw). The target transformation is updated through iterations,
which aligns the measured points to the predicted points. After the third iterations,
the green points align with the blue points.

def SolveForPose(p_pred, n_pred, p):

...

return deltaT

Input: p_pred, n_pred, p ∈ R3×m are the predicted points, predicted normals, and
measured points in the world coordinate system.
Output: deltaT ∈ R4×4 is the incremental update transformation using Equation
(15).
Note: You can use the provided function SavePoints(filename, point, color) to
save the points with a color ([0, 255]3) to visualize the correspondences in MeshLab

software. Figure 8(a) and 8(b) illustrate the updated transformation, i.e., the target
transformation is updated, which aligns the measured points to the predicted points.
After the third iterations, the green points align with the blue points.

12

CSCI 5563: Assignment #5

Depth Fusion

8 TSDF Fusion

(a) Initial TSDF (b) Final TSDF with 40 depth fusion

Figure 9: TSDF can be fused over frames to complete the scene.

Given the TSDF from previous frames (F) and the TSDF from the new frame (Fnew),
you will fuse the TSDF to update F based on weighted average:

F (i, j, k) =
W (i, j, k)F (i, j, k) +Wnew(i, j, k)Fnew(i, j, k)

W (i, j, k) +Wnew(i, j, k)
,

W (i, j, k) = W (i, j, k) +Wnew(i, j, k). (17)

def FuseTSDF(tsdf, tsdf_new):

...

return tsdf

Input: tsdf, tsdf_new are the TSDF class from previous frames and new frame, re-
spectively.
Output: tsdf is the updated TSDF.

References

[1] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares, “Efficient implementation
of marching cubes’ cases with topological guarantees,” Journal of Graphics Tools,
2003.

13

	Submission
	Overview
	3D Points and Surface Normals from Depth
	TSDF from Depths
	Surface Prediction
	Projective Correspondence Estimation
	Pose Estimation
	TSDF Fusion

