CSci 5563 Assignment 5

Luis Guzman

Friday May 7, 2021

This assignment is based on the paper KinectFusion: Real-Time Dense Surface Mapping and Tracking
and consists of fusing multiple depth images together to form a coherent 3D representation of a scene. The
full algorithm is shown in figure [I]

3D surface

Algorithm 1 Dopih Fusion

1: Toad the first depth image. 3D surface
2T=1, > Initialization transformation ° .
3: Tnitialize TSDF using the first depth image. © CreateTSDF [[p(uiis)]| Surface point, p(ui;.x)
& for it image in all depth images except for the first image do
Initialize current transformation Ty = [] q
6 Get camera extrinsic from Tou [Ivell /" Voxel location, ve
7 Predict points from the TSDF by ray casting > InageRays. cast
s Predict normals from the predicted points » ComputeTSDENormal
9: Load the i"" depth image °
10: Compute 3D points and surface normals. © Get3D . Camera
1 for ® iteration < e do dtion of voxel, wik
12 Find correspondences > FindCorrespondence
13 Compute AT & SolveForPose Camera plane
1 Update Teyer and make sure det(Rey,) = 1 I’ \
1 end for - Truncation boundary
16: Update transformation T = Ty,
I7: Create new TSDF for the i depth with T > CreateTSDF
18 Fuse TSDEs - FuseTSDE (a) 3D geometry of SDF (b) TSDF in 2D

19: end for

Figure 1: Full depth fusion algorithm (left) and the truncated signed distance function (right)

Every pixel in a given image represents part of a surface, and the depth image tells up how far away that
surface is from the camera. In order efficiently store the scene geometry, we use the truncated signed distance
function (TSDF), which represents the 3D space as discrete voxels. Each voxel stores the signed projective
distance to the image surface. Positive values are defined as being in front of the scene geometry and
negative values are behind the surface. All values above/below +1 are truncated to 1. Figure [1] visualizes
this operation. Additional details are provided below, but an understanding of the TSDF is important to
conceptualize early steps in the method.

In order to construct the initial TRDF, we build an initial estimate of the surface geometry and normals
from the first depth image. The 3D point corresponding to each image pixel is

Pe(u,v) = pe(u) = dK™ |v

1

where d is the depth given by the depth image, and K is the intrinsic parameter. The surface normal
can be calculated with

() — (e 1) pe,) x (Bl v 1) e, v)
el 1.0) = ol 0) X (ol v+ D) = Pl)

My calculated normals are shown in figure

Figure 2: The initial depth image (left) and my normal estimation (right)

Next, I calculate an initial estimate of the TSDF from the calculated normals. The TSDF sections the
3D world into 256 x 256 x 256 discrete voxels. The (i, j, k)" voxel has a location in the world coorinate
system of

i
Vw(i,j,k):Vo+l .7 5
k

I use this 3D position to calculate the distance from each voxel to the nearest point on my estimated
surface from the previous step. This distance defines the SDF as

SDF(i, j, k) = [Ipe(uiji) | = lIve(i, 5, k),

I also only consider voxels that are visible from the camera and have non-zero distance value to be valid.
The TSDF values and weights can then be initialized as

1 if |F(i,5,k)| <1

if |SDF(i,j,k)| > W (i, j, k) :{ 0 otherwise.

. 1
Fli.gk) = { SDF(i,j,k)/y otherwise
My initial estimate of the TSDF is shown in figure

Figure 3: The initial TSDF estimate

The next step is to estimate the surface using zero-crossing of the TSDF. Because the TSDF is signed,
depending on which side of the surface a given voxel is on, the surface itself corresponds to a sign of zero.
Defining the surface in this way can give a more accurate representation than our inital estimate, and makes
it easier later on to add additional depth data to our geometric representation.

In order to find zero-crossings, we use the method of ray-casting. By shooting a ray through every camera
pixel and recording the TSDF of every voxel it passes through, we can define a zero-crossing as

F[\ h,w] * FIA+1,h,w] <0

where A is the number of steps along a given ray, and the ray itself is defined as

r, = t —+)\Z'I{(i7
with d = Hléiﬁ\\ and R,t defining the camera location. The zero crossing will then be somewhere between
F[\ hyw] and F[A 4+ 1, h,w] so we interpolate to find the true value with
~ P F(x;)
Bu(w) = [gg} T) -) T

The normals can the be calculated from the trdf as well. The result of my point and normal estimation
is shown in figure

Next, we need to align multiple depth images to the world coordinate system. We do this using the
functions FindCorrespondence and SolveForPose. The correspondence is solved by taking each predicted
point, finding the corresponding pixel coordinate in the new camera, then getting the new point for that
pixel. The transformation is calculated as

Figure 4: The estimations of the 3D points (left) and the normals (right) from the TSDF

P, (1) = Rp.(1i) +t, n,(1i) = Rn.(1), A m —KR,(p, - C).

)

Corresponding points must fall within the camera pixel boundaries and follow the criteria
”ﬁw - pw(ﬁ)ll < EP
P! pu(li) > cos(e,)

Next, in SolveForPose the new camera pose is approximated using 3 linear transforms. Since each step
is assumed to be small, the linear approximation is valid and we converge to the new camera pose. The new
pose is solved for as a Ax = b linear system.

m
mirii‘f{lize Z [(pow(t;) — Pi) 1y
i—

1 a =7 t,
- : a1 Bty
=(AT)T where AT-= v -8 1 t
0 0 0 |
B
af [[pu(W)], L] Z a (p1 — pu(ti1))
: i = o : R
n:—n [[pw(um)]x IJ] ty n;l;, (pm - pw(um))_
t

n

Lastly, the TSDF is updated using

W (i, j, k)F (i, 4, k) + Waew (i, J, k) Faew (%, 4, k)
W (i, j, k) + Whew(i, 7, k) ’

W (i, j, k) = W(i, . k) + Waew i, j, k).

F(i,j,k) =

Unfortunately I wasn’t able to get the alignment code working due to time constraints. I have imple-
mented every function and ensured that it is running without errors, but the meshes do not align properly.
However, I have visualized my implementation up to the normal estimation, so I'm pretty confident up to
that section. The full depth fusion requires further debugging.

