EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

Satellite Image Building Detection using U-Net
Convolutional Neural Network

Liam Coulter, Teague Hall, Luis Guzman, Isaac Kasahara

Abstract—Convolutional Neural Networks (CNNs) are at the
forefront of current image processing work in segmentation
and object detection. We apply a U-Net CNN architecture to
a satellite imagery data set to detect building instances in birds-
eye view image patches, since the U-Net has been shown to
achieve high accuracy with low complexity and training time.
We present our results in the context of the SpaceNet Building
Detection vl Challenge, and compare scores against the winning
algorithms. Results from our implementation demonstrate the
U-Net architecture’s ability to successfully detect buildings from
satellite images. We discuss the challenges and limitations of
using CNNs and the U-Net in particular for image segmentation,
despite the success of our implementation.

I. INTRODUCTION

HE availability of high-resolution satellite imagery has

motivated attempts at automatically generating civil fea-
ture map systems. These maps should contain information
about man-made structures such as buildings and roadways
which can then be used for applications in civil planning, hu-
manitarian response efforts, and more. An automated approach
for generating these feature maps is a cheaper, faster, and
potentially more accurate alternative to manual map creation.
In addition, an automated approach reduces the cost and effort
to update feature maps, as old manual map systems become
outdated. This could be very valuable for geographic regions
experiencing fast population growth, or for updating maps
after natural disasters.

SpaceNet is an open innovation project hosting freely
available image data with training labels for machine learning
and computer vision researchers. The aim of SpaceNet is to
aid advancements in the field by offering high quality la-
beled training and testing data, and corresponding challenges.
Historically, satellite image data was privately managed or
government controlled, making it difficult or impossible for
researchers to use for algorithm development. SpaceNet has
compiled extensive image sets along with labeled training data
which is made free to the public in the hope of advancing
automated algorithms. The majority of activity in these algo-
rithms has been dominated by machine learning approaches.
In addition to providing free data sets, SpaceNet organizes
targeted competitions that look at specific sub-problems within
satellite image mapping. These competitions intend to motivate
interest and advancements in the topic.

The first SpaceNet challenge (“Building Detection v1”)
focuses on building detection from optical and hyperspectral
images. This challenge provides 3-band and 8-band satellite
images along with bounding polygon vertices denoting the

presence and location of buildings. The objective is to au-
tomatically generate a set of building polygons that most
closely approximates the manually generated polygons. In
order to assess the quality of automatically generated building
polygons or masks, SpaceNet uses several metrics including
the Intersection over Union (IoU), precision, recall, and F1
scores described in the next section. Subsequent SpaceNet
challenges focused on extracting other features from satellite
imagery such as roadways (challenges 3 and 5), generat-
ing building detections from other types of data including
Synthetic Aperture Radar/SAR (challenges 4 and 6), and
making high-level inferences about route transit time or urban
development (challenges 5 and 7). We focus only on building
detection here.

Our project solves the SpaceNet Building Detection vl
challenge by using a U-Net Convolution Neural Network
(CNN) architecture for semantic segmentation. The U-Net
architecture was designed for biomedical image segmentation
and shows a high degree of accuracy with low complexity
and low training time. In addition, the U-Net employs “skip
connections” instead of fully connected layers, which allows
it to preserve finer details in the final segmentation map. We
discuss these more in detail later.

The field of image segmentation has been active in recent
years, aided by advancements in machine learning methods.
Application areas range from biomedical imaging (for which
the U-Net was developed) to autonomous vehicles. Semantic
segmentation differs from instance segmentation in that we
do not care about separating instances of the same class in
the final segmentation map, but rather assigning a class to
each pixel in the image. For example, a semantic segmentation
task would be to classify every pixel in an image as either
a building or not a building; an instance segmentation task
would be to distinguish separate occurrences of buildings in
an image, and represent that in the final segmentation map [2].
The current state-of-the-art in semantic segmentation consists
mainly of machine learning methods since the development
of AlexNet [3], specifically CNNs and U-Net variants, since
fully connected CNNs tend to have trouble with fine details.
Two recent U-Net variants confirm this difficulty, underscoring
the importance of using skip connections instead of fully
connected layers [4]], [5].

This report is organized as follows. Section II provides a
description of the SpaceNet Building Detection v1 challenge,
with discussion of data, labels, solution requirements, and
evaluation metrics, as well as a detailed description of the
U-Net architecture and our specific implementation including
points of difficulty in our implementation and training. We

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

400

Ground Truth Building Polygons

100

200

300

o 100 200 300 400

Fig. 1: Rio de Janeiro image tile with building polygons superimposed (left) and associated building label polygons (right)

[El]. Building polygons have varied shapes.

also describe our implemented evaluation metrics, and how
they may differ from those used by actual contestants in the
Building Detection v1 challenge. In section III we present
the results from our U-Net implementation, and compare
them to the winning results from the SpaceNet Building
Detection v1 challenge. Section IV contains a discussion of the
strengths and weaknesses of our approach, and a discussion
of the limitations of the U-Net architecture. Finally, we draw
conclusions from our experimentation and analysis in section
V.

II. METHODS AND THEORY
A. The SpaceNet Building Detection vl Data

The SpaceNet Building Detection challenge v1 data was
collected from the WorldView-2 satellite and covers a 2544
square kilometer region centered over Rio De Janerio with
50cm resolution [[I]]. The dataset is broken into individual im-
ages with size 200mx200m. These image “tiles” are between
438 and 439 pixels wide and between 406 and 407 pixels
tall, and the 3-band RGB images have been pan-sharpened.
The training data set consists of approximately 6000 such
3-band RGB image tiles. Along with the processed images,
SpaceNet provides building labels in the form of sets of
polygon vertices denoting the corners of buildings in each
image. These building label polygons were generated using
rough automated techniques and then detailed by hand. This
labor intensive process resulted in approximately 380,000
buildings for the entire Rio de Janeiro geographic area, over
the 6000+ image tiles. The building labels polygon data are
provided in geoJSON files which correspond to each image
tile. In the original SpaceNet Building Detection v1 challenge,
participants used this entire labeled data set for training
and validation, and submitted geoJSON files with proposed
building detections from images in a separate unlabeled testing
data set. However, since we do not have access to labels for the
testing set and thus are unable to determine our performance
from this set, we use the labeled training data set for both
training and validation. We employ a split of 80% for training

and 20% for validation, and report our accuracy numbers from
the validation set, which was not used for training. Figure
[T] shows a single image tile along with the corresponding
building label polygons.

B. SpaceNet Evaluation Metrics

The SpaceNet challenges use several metrics to assess
building prediction quality: Intersection over Union (IoU),
precision, recall, and F1 score. The precision, recall, and
F1 metrics are based on the IoU for individual buildings
in an image, and can be computed for an individual image
or across several images as a weighted average. IoU is a
measure of how well predicted building label polygons or
masks overlap with ground truth polygons, and is commonly
used to assess semantic segmentation results. Let A and B
be two sets of points; in our application, A represents the set
of pixel locations contained within the bounds of the ground
truth building label polygon and B represents the set of pixel
locations contained within the bounds of a predicted building
location polygon or mask. The IoU then, is

|AN B
I0U(A,B) = 1
where | - | represents set cardinality. It is apparent that ToU

is shift-invariant, and independent of the size of given sets A
and B, since the union normalizes the IoU result to within
the interval [0, 1]. A perfect IoU score of 1 happens when
a predicted building label polygon exactly coincides with the
ground truth label polygon, and an IoU score of 0 occurs when
there is no overlap at all. The IoU metric can be limiting for
small objects where low pixel resolution can greatly influence
the result. Further, the IoU doesn’t account for the shape of
predictions relative to ground truth polygons; as long as the
size of the intersection and union are the same, we could have
any number of (incorrect) predicted building shapes, and any
sort of overlap, and the IoU would give the same score. Finally,
the IoU doesn’t account for building instances where there
is a complete mismatch between the predicted and ground
truth polygons; the predicted polygon could be very close (but

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

not intersecting) the ground truth polygon, or the predicted
polygon could not exist. In either case though, the IoU would
give a score of zero. So, the IoU by itself does not give a
complete picture of the quality of prediction results.

To generate an overall evaluation metric for an entire image
or group of images, it is necessary to combine the results
of each IoU. This is achieved by first establishing an IoU
detection threshold of 0.5; any individual IoU result greater
than this threshold is considered a successful detection. For
example, if there is one building in an image and the IoU
score is 0.4, we do not report a building detection since the
score is below the threshold. In the case where there are several
buildings in an image, we search over all predicted building
polygons for each ground truth polygon and compute the
IoU score between the current ground truth and all predicted
polygons. The largest IoU is chosen as the correct match
for the current ground truth building, and we check against
the threshold to see if the current prediction constitutes a
detection. If we have a detection, we say we have found a true
positive, and if not we say we have found a false positive. We
then remove the current predicted and ground truth polygons
from the list, and move on to the next ground truth polygon
(cycling through all remaining predicted polygons again). This
process is shown in figure [2]

Set i=1
Proposal Queue:
TestP, [¢-----
i PyPr Py
5 =max{1oU(B.L) e = = = = = Label List:
(o1

if S, <05 ifS =05

P;is False P;is True
Positive Positive
l Remove
urgmax{an{E.LJ)
— Inc‘r:ment from Label
e L7l | List
ifi> Ml
Stop

Fig. 2: Assessing predicted building polygons using IoU [|§|]

Once we have determined the number of true positives, false
positives, and false negatives (where we have a ground truth
building but no predicted building polygon), we define the
precision and recall. Precision is defined as the number of
true positive predicted building detections divided by the total
number of predicted buildings. That is,

|True Positives|
| Total Predicted Buildings|

This metric conveys information on the algorithm’s ability
to detect buildings while avoiding false detections; a higher
precision means more detections are correct, and fewer are

2)

Precision =

incorrect. Precision alone is not sufficient to assess prediction
quality because it is unaffected when the algorithm fails to
detect buildings. Recall, then, is the fraction of true building
polygons that are detected by the algorithm. That is,

|True Positives|

Recall = 3)

|True Positives| + |False Negatives|
|True Positives|

~ |Ground Truth Polygons| @
Recall conveys information about the algorithms ability to
detect all objects in the image and thus gives a lower score
when objects are missed.

To give an overall picture of the quality of a given predic-
tion, we combine the precision and recall into the F1 score:

2 - Precision - Recall
Fl = 5
(Precision + Recall))

Since precision and recall range from O to 1, so does F1; the
2 in the numerator serves as a normalizing factor.

Figure [3] shows an example image with predictions and
ground truth polygons. The ground truth polygons are shown
in blue, and predictions are either green or yellow, signifying
an IoU score above or below 0.5, respectively.

Fig. 3: Performance evaluation of image tile using IoU [IEI]

C. Image Pre-Processing

Since SpaceNet data was in the form of TIFF images
and corresponding geoJSON building polygon labels, we had
to convert these to a format that was easier to work with
in the context of training a CNN. We made use of the
publicly-available SpaceNet utilities [7] to convert the building
polygons in the geoJSON files from latitude and longitude to
image coordinates in pixels, and save the result as a binary
image mask with O denoting that there is no building in that
pixel location and 1 denoting the existence of a building.

In order to make use of the IoU metric, we had to be able
to identify how many building mask polygons existed in both
the ground truth and predicted building masks. For this we

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

> o =

(b) Building Contours

(a) Building Mask

Fig. 4: Building mask and from

cv2.findContours.

resulting polygons

used the openCV function findContours on the image
masks, which returns a list of objects with polygon corners
in pixel coordinates for each polygon in the image. Figure
shows the building mask and result of cv2.findContours.
One possible discrepancy between this and the polygons in the
geoJSON files is that collections of buildings which are very
close together may appear in the building mask as one long
building. Since we used the same image masks for training
and this occurrence was not very frequent, we decided this
was an issue we did not need to address.

Finally, we normalized the RGB images to [0, 1] for numeri-
cal stability when training our U-Net. We also standardized the
size of the images by removing a column and/or row where
necessary so that all images had size 406 x 438, and then
resized the images to 286 x 286.

D. U-Net CNN Architecture

Our building detector is based on the U-Net CNN architec-
ture. This architecture was originally developed for biomedical
image segmentation, to distinguish cells in an image [J8]]. Since
then, this architecture has been applied many times to image
segmentation problems in a variety of applications, and shows
robustness and accuracy without long training times or high
complexity. Thus, it is an appropriate method for our building
detection problem.

The U-Net architecture gets its name from the contrac-
tion and subsequent expansion of feature maps, conceptually
shown as a U shape as in figure[5} The contraction or encoding
path compacts the input image signal to a map of feature
channels, and the expansion or decoding path then generates
a segmentation mask through up-convolution, which reduces
the number of feature channels at each step. This expansion
path operates in a feed-forward manner.

Figure [5] shows the U-Net architecture for a 512 x 512
input image. The contraction path resembles a typical CNN
architecture found in many machine learning applications
where the image is compacted to a feature map representation
with additional channels, termed feature channels. At each
level of the contracting path, the signal undergoes a set of
two 3 x 3 convolution operations which reduce the signal size
if padding is not used. Each convolution operation is followed

by a rectified linear unit (ReLU) activation function, defined
by

ReLU(z) = max{0,x} (6)

to give an activation map. Then, a 2 x 2 max pooling operation
is applied with a stride length of 2 in order to downsample
the signal to a still smaller size. The 2 X 2 max pooling
operation involves taking the max of each 2 x 2 patch of the
signal, as a way of downsampling the signal while keeping
the elements with the largest activation result. At each level
of the contraction path, the feature channels are doubled.
At the base of the U we have our most contracted signal
feature map, with dimension 1024 x 30 x 30, meaning we have
1024 feature channels. The intuition behind feature channel
doubling is to allow the network to build more complex
features in subsequent layers. Since the feature channels of
the previous layers act as primitives for the construction of
new features, doubling the number of channels allows for a
balance between quantity and semantic meaning of the learned
features.

The right side of the U-net is an expansive path where each
level involves up-convolving the feature channels followed
by two 3 X 3 convolutions and ReLU. Up-convolution is
an upsampling technique where a learned convolution mask
is multiplied by each cell of the spatially lower-resolution
signal in order to obtain a higher-resolution signal. This differs
from traditional up-sampling where an unlearned mapping is
used to increase signal resolution. Additionally, each level
of the expansion path is concatenated with its corresponding
contraction level feature map, which is cropped to match the
size of the expansion feature vector. This allows the U-net to
maintain spatially localized information that would otherwise
be lost during contraction. Each level of the expansion path
halves the number of feature channels while increasing the
spatial resolution of the signal.

The channels of the output signal will correspond to the
desired number of segmentation classes, in our case one. This
is achieved by a final 1 x 1 convolution layer that maps
the output to the desired number of classes. The architecture
illustrated in figure [5] corresponds to a two class segmentation
problem, and hence has an output depth of two.

The U-net architecture is trained using the satellite images
and associated segmentation maps (binary building masks),
using a cross-entropy loss function. The original method
proposed in [8] features a pixel-wise softmax over the output
feature map combined with a cross entropy loss function. The
softmax is defined pixel-wise as

eak(z)

=
Z eak/(-T)

k=1

Pi(z) Q)

where ai(x) is the activation in feature channel k at pixel
location z, pi(x) is the new value of the pixel in feature
channel £ at location z, and K is the total number of feature
channels. We then combine this soft-max function with a
cross-entropy penalty defined over the pixel region {2 as

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

input
image |»
tile

¥

D»EHI:‘J _EI-DG

I:Ibl:l#l:l

output
| segmentation
4| | map

D"‘D"D = conv 3x3, ReLU
copy and crop
¥ max pool 2x2

4 up-conv 2x2

= conv 1x1

Fig. 5: U-Net CNN architecture for 512 x 512 input images [8§]].

z)log (p(x)) (8)

Z pl(m

e

where [(z) is the true label of the pixel at location x, p;(;)()
is the true probability distribution of each class, and p(z) is
the estimated distribution.

The original U-Net paper used a slightly different loss
function aimed at improving performance of border pixels,
defined as

Eweighled = Z w(x) IOg (pl(av) (l‘)) ©))

zeQ
} (10)

where w, is a pre-computed weight map intended to balance
segmentation class frequencies, dy(z) is the distance from x
to the neared object border, and dy(x) is the distance from z
to the border of the second closest object. The parameters w
and o can be chosen manually.

The weight function w(z) is predefined by the ground
truth segmentation mask, and is used to train the network to
differentiate between instantiations of the same class. Defining
the weight function this way ensures separate instances of the
same object do not morph into a single instance.

We chose to use the simpler cross-entropy loss due to its
ubiquitous use in the training of segmentation CNNs and its
seamless integration with PyTorch, and thus we did not use
Eyeighted from equation (9).

As a final note, it is important to initialize the U-Net weights
appropriately to achieve maximum occupancy of the network.
Unbalanced weights can cause certain parts of the network
to dominate network operation. An ideal approach would be

with

(di(z) + da(x))?

w(z) = we(x) + wp exp {— 552

to choose initial weights where each feature map has unit
variance. For the U-Net architecture then, weights should be
drawn from a zero-mean normal distribution with standard
deviation 0 = 1/2/N where N indicates the number of input
nodes for each neuron.

E. U-Net Implementation

We implemented our U-Net using PyTorch. Following the
architecture just discussed, our U-Net had 5 encoding levels
and 4 decoding levels (plus the final 1 x 1 convolution), and
output a final binary segmentation map.

In order to load the images and building masks, we im-
plemented a custom data loader using PyTorch that would
standardize the image and mask sizes by removing a row or
column where necessary, and reduced image sizes to 286 x 286,
half that used in [8]] as previously discussed. This size was
chosen to speed up the training process and to avoid stability
issues we encountered when training on larger images. We also
normalized the RGB images to [0, 1]. As mentioned above, we
used the SpaceNet Building Detection v1 training data for both
training and validation/testing. In our data loader we used 80%
of the data for training, and 20% for validation/testing.

Our implementation differs slightly from the original paper.
We found that cropping the encoder feature vectors before con-
catenation leads to unstable gradient updates. This would lead
to our network predicting nan at unpredictable points during
the training process. We attribute this to exploding/vanishing
gradients from the pixels that are deleted during the cropping
process. To solve this issue, we instead chose to pad the decod-
ing feature vector so that we are not deleting any information
inside of the network. Additionally, we chose to set padding
to one for each convolution layer whereas the original paper
sets padding to zero. This step is particularly important for
our input image size of 286 x 286, since without padding,

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

Training Loss

Validation Loss

1.0

0.8

0.6

Loss

0.4

0.2

0.0 -

0.15

0.14 1

0.13

Loss

0.12

0.11 1

0.10

0 2500 5000 7500 10000 12500 15000 17500
Iterations

15 20 25

Epochs

10

Fig. 6: Training and Validation loss for 25 epochs.

we lose significant image resolution at each convolution step.
We observed this modification to also result in a more stable
training process. Both these modifications to the padding result
in output image sizes that are 286 x 286, which is conveniently
the same size as our input image. We verified that our all
tensor shapes in our network matched the original paper before
making these modifications.

For training, we used the Adam optimizer with a learning
rate of 1 x 107#, weight decay of 1 x 10~® and momentum
of 0.9. We used a batch size of 16, which saturated the
12GB of video memory we had available for training. We
also included a scheduler, which would decrease the learning
rate whenever a two-epoch plateau in the validation loss is
observed. Decreasing the learning rate in this way can result in
additional performance by avoiding overshoot of the network
weight updates during later epochs. The update gradients are
also capped at 0.1 to avoid too large of updates at each step.

We trained the U-Net for 25 epochs with the previously
described softmax cross-entropy loss. In PyTorch, this loss
function is implemented as BCEWithLogitsLoss for bi-
nary classification. Figure [6] shows the training and validation
loss for the 25 training epochs. In each epoch we trained
the net on all the training images, then evaluated the U-Net
predictions and calculated the loss. We noted a plateau in our
training and validation loss after 15 epochs, so we chose these
network weights as our final model to avoid overfitting.

Figure [/| shows training images, their predicted masks, and
ground truth masks, for two different training images. To
generate a final binary mask, we threshold the output of
our network at 0.5. All pixel values below 0.5 correspond
to the label “not building” and everything greater than 0.5
correspond to the “building” label. This is unrelated to the
IoU thresholding performed for assessment.

ITI. RESULTS
A. U-Net Segmentation Results

From visual inspection, we observe that the image masks
of our U-Net segmentation network match remarkably well
with the ground truth. We qualitatively evaluated three types
of scenes: rural, sub-urban, and urban (pictured with ground

50 100 150 200 250

50 100 150 200 250 50 100 150 200 250

Fig. 7: Top to bottom: rural, sub-urban, urban scene. Left to right:
training images, predicted building masks, and ground truth masks.

truth and predicted labels in figure [7), and found that our
network succeeded in classifying buildings at each density.
In dense urban environments, the network excludes roads and
courtyards, and in rural areas, false positives are low. We noted
that the largest difference between our masks and the ground
truth was near building edges and when multiple buildings are
classifies as one.

In order to calculate our U-Net results, we used the openCV
function findContours to find the boundaries of predicted
and ground truth building footprints, and calculated the IoU
as described in section II, following the SpaceNet convention
of a 0.5 threshold to determine whether an IoU constitutes a
detection or not. Table [shows the true positive, true negative,
and false negative results from our validation set. For our

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

problem, the concept of a true negative is not well defined: a
true negative is where there is no building in the ground truth
mask or the predicted mask, and so there is no way to “count”
the locations where we have a true negative.

From table [[] it is apparent that our algorithm misses many
buildings, having a somewhat high rate of false negatives. The
number of false negatives is likely explained by the situation
where many nearby buildings are detected as one. In this case,
only one of the buildings would be considered a true positive,
and the rest are false negatives, even though the image masks
match well. Similarly, our false positive rate could also be
skewed by the situation where a single building is detected as
two separate masks due to occlusion. We found this effect to
not be as prevalent as the many-to-one scenario. Overall our
network detected 7,333 out of 33,541 ground truth buildings.
Even considering these false positive and false negative results,
our network performed similarly to the winning submissions.

TABLE I: U-Net Building Detection Results.

Actual Positive | Actual Negative

Predicted Positive 7,333 17,192

Predicted Negative 26,208 N/A

Figure |8 shows two validation images with the correspond-
ing predicted and ground truth building polygons and masks.
We see that the U-Net does a good job of finding buildings
in the image along with general shapes and orientations, but
sometimes fails to separate buildings which are close together.
In addition, the U-Net predicts general shapes which tend to be
more rounded instead of having sharper corners, as the ground
truth masks do.

We calculated the precision, recall, and F1 as described
above from the total true positive, true negative, and false
positive building detections in table and computed the
overall F1 score from these precision and recall numbers.
We also calculated a simple average IoU score over all the
validation images, by taking the IoU between all predicted
building masks and all ground truth building masks for each
image, and averaging the result over the number of validation
images. Note that this uses a different approach from that used
in taking the pairwise IoU to determine detections, and thus is
not related to the precision, recall, and F1 scores. The average
IoU is an indication of how well our masks match the ground-
truth overall and does not consider building instance detection.
Table |l]| shows all four computed metrics for our validation set.

TABLE II: U-Net Building Detection Results.

Average IoU | Precision Recall F1 Score

0.507564 0.299001 | 0.218628 | 0.252575

Note that average IoU score is significantly higher than
the other metrics because it is not affected by the same false
negative and false positive errors described earlier.

0
00
00
0 100 200 0 100 200

(a) Validation image 1: building polygons

100

200 .

100

200

0 100 200 0 100 200 0 100 200

(d) Validation image 2: building masks

Fig. 8: Left to right: validation images, predicted building polygons
& masks, and ground truth polygons & masks.

B. SpaceNet vl Challenge Winners

To provide context on the effectiveness of our U-Net
building detection implementation, we present the top 3
winning scores from the SpaceNet Building Detection vl
Challenge. The three top scores were submitted by users
wleite, Mark.cygan, and ginhaifan.

The first place algorithm first put each pixel into one of
three classes: border, inside building, or outside building.
Then wleite used a random-forest based classificaton method
(this method did not use a deep neural network) to classify
buildings, and another random forest classifier to determine
building polygon footprints. The second place algorithm from
Mark.cygan used the same 3-category classification (border,
inside building, outside building) but used a typical CNN
classification approach. The CNN output was a heat map that
was then converted into a polygon footprint mask. The third
place implementation from ginhaifan used a multitask network
cascade approach which is a deep convolution, instance aware
segmentation network.

The challenge winner’s F1 scores are shown in table
along with the F1 score from our U-Net implementation.

Our F1 score appears to compete with the winning imple-
mentations; our score puts us between the 1% and 2™ place

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

TABLE III: SpaceNet Building Detection V1 challenge win-
ners and our U-Net results.

15t Place | 2" Place | 3™ Place | Our U-Net

F1 Score | 0.255292 | 0.245420 | 0.227852 0.252575

entries. However, there are several reasons why comparing our
F1 score to those reported by the winners may not be exactly
fair.

First, we evaluated our method on a different set of images
than the winners, since we did not have access to building
masks for the official testing image set. Second, instead of
comparing geoJSON truth polygons to our building footprints,
we evaluated using cv2.findContours, and so some
buildings that were close together may have been considered
to be single buildings (in both the ground truth images as
well as our predictions), which could impact the IoU score
as well as the total number of ground truth buildings, thus
increasing precision and recall. Third, our approach used an
essentially unmodified U-Net coupled with a simple contour
detection method to find building polygons. In many of
the winning algorithms however, they employed complicated
multi-step approaches for both building detection and polygon
generation. Finally, we used our own implementations of the
IoU, precision, recall, and F1 scores, which may or may not
be slightly different from the official implementations.

IV. DISCUSSION

Our U-Net shows very good performance relative to the
winners of the SpaceNet Building Detection vl challenge,
indicating that it is a powerful method for image segmentation.
The relative ease of implementation, and its conceptual sim-
plicity make it an attractive option for semantic segmentation
tasks. However, the method has several drawbacks.

First, there were some implementation quirks. Initially we
had implemented the U-Net without padding, instead just
cropping the input signal from one step of the contracting path
to the next. This resulted in a final segmentation mask that
eventually became full of not-a-number (NaN) values. After
adjusting the algorithm and using padding in the contracting
and expansion paths, this was no longer an issue.

Second, our network occasionally struggles with differ-
entiating buildings when they are too close together. The
original U-Net paper attempts to improve this performance by
including a term in the loss function that specifically weights
border pixels. We believe that implementing this loss function
could improve our performance, but we leave this fine-tuning
to future work.

Finally, the U-Net sometimes shows difficulty in predicting
the building sizes in the images we used. For example, in the
bottom image of figure [/} there is a ground truth building near
the middle of the image that is much larger than its predicted
counterpart. We observed that this most often happens for long,
skinny buildings, which could be a byproduct of not having
enough resolution for the convolution operations to build
reliable features. Another downside of our approach is the

absence of sharp edges and corners in our predicted mask. This
is another result of the convolution down-sampling, and we
likely lose out on some IoU value due to the rounded corners
of the predicted buildings. Some more advanced segmentation
networks aim to fix this by including additional skip layers
that preserve fine details in the mask.

For these reasons, the U-Net seems to be an effective
semantic segmentation method, with some limitations.

V. CONCLUSION

The amount of recent activity in the development of ma-
chine learning methods coupled with an influx of satellite
image data has motivated efforts in automatically generating
civil system maps which before recently has been impos-
sible or very difficult. Organizations like SpaceNet play an
important role in these efforts by providing free satellite
image data sets and targeted competitions aiming to solve
common problems associated with satellite image mapping.
Our project focused on the first SpaceNet challenge associated
with building detection, and shows promising results.

Our solution leverages the U-net CNN architecture, a pow-
erful method for semantic segmentation. This network deviates
from the fully connected CNN in that its contraction and
expansion paths use only the valid portion of the signal from
the previous level, but makes gains in training simplicity
and accuracy as a result. The contraction path builds a low-
resolution feature-deep representation that maintains feature
context beyond just the desired number of output classes. The
expansion path then combines this feature-deep representation
with the localized features associated with the previous con-
traction levels. This expansion process reduces the number
of features while increasing image resolution until a high-
resolution image is obtained containing the desired number
of output segmentation classes. For our application, the U-Net
produces a segmentation mask representing either a building
or non-building.

Our results suggest that the U-Net is an effective method
for semantic segmentation, potentially competing with the
SpaceNet Building Detection vl challenge winners from the
original challenge. Although our U-Net misses buildings at a
moderately high rate, our overall IoU, precision, recall, and
F1 scores demonstrate the algorithm’s effectiveness for the
building detection segmentation task. The U-Net has several
limitations which could prove to be significant drawbacks
depending on the application, but our implementation showed
strong results for the task of building detection.

REFERENCES

[1] A. V. Etten, D. Lindenbaum, and T. Bacastow, “Spacenet: A remote
sensing dataset and challenge series.” ArXiv, 2018.

[2] J. Jordan, “An overview of semantic image segmentation,’
Online, 2018. [Online]. Available: https://www.jeremyjordan.me/
semantic-segmentation/

[3] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikidine, “Deep learning for generic object detection: A survey,”
ArXiv, 9 2018.

[4] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation,” ArXiv, 10 2017.

https://www.jeremyjordan.me/semantic-segmentation/
https://www.jeremyjordan.me/semantic-segmentation/

EE 5561 IMAGE PROCESSING AND APPLICATIONS, SPRING 2021

[5S] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal,
“The importance of skip connections in biomedical image segmentation,”
ArXiv, 9 2016.

[6] P. Hagerty, “The spacenet metric,” Online, 2016. [Online]. Available:
https://medium.com/the-downling/the-spacenet-metric-612183cc2ddb

[7] jshermeyer, T. Stavish, dlindenbaum, N. Weir, Incohn, and W. Maddox,
“Spacenet utilities,” Online, 2017. [Online]. Available: |https://github.
com/SpaceNetChallenge/utilities

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” ArXiv, 5 2015.

https://medium.com/the-downlinq/the-spacenet-metric-612183cc2ddb
https://github.com/SpaceNetChallenge/utilities
https://github.com/SpaceNetChallenge/utilities

	Introduction
	Methods and Theory
	The SpaceNet Building Detection v1 Data
	SpaceNet Evaluation Metrics
	Image Pre-Processing
	U-Net CNN Architecture
	U-Net Implementation

	Results
	U-Net Segmentation Results
	SpaceNet v1 Challenge Winners

	Discussion
	Conclusion
	References

