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Implementation of Region Filling and Object
Removal by Exemplar-Based Image Inpainting

Luis Guzman

Abstract—This project consists of an implementation of the
algorithm presented in Region Filling and Object Removal
by Exemplar-Based Image Inpainting by Criminisi et al. [1].
The algorithm varies from other diffusion-based and texture-
synthesis-based inpainting techniques in that it performs a direct
copy of texture from the source region to the target region.
This method avoids the blurry in-filling that is associated with
diffusion-based techniques, and it can work for both large
and small fill regions. The target region is filled in an order
determined by its priority, which is a measure of the algorithm’s
confidence and the presence of texture patterns in the neighboring
region. This allows prominent image structures such as lines and
patterns to be propagated into the target region with high fidelity.
My test images show that I successfully reproduced the results
of the original paper through my implementation.

I. INTRODUCTION

Image inpainting attempts to synthesize a patch of an image
given an input image and a mask, which defines the patch to
be filled. This technique is most often applied to removing
unwanted objects from an image and can be a powerful tool
for image restoration. In the typical use case, a user will
take a photograph, designate objects to be removed, and then
the algorithm is expected to fill in the area that the object
occupies in a believable fashion. In many cases, the algorithm
presented by Criminsi et al. can create a filled-in region that
is indistinguishable from the rest of the image.

An important factor to the performance of these algorithms
is contextual awareness. Humans tend to focus on patterns
within an image and can easily detect when those patterns are
broken [2]. For this reason, preserving the patterns that exist
at the infilling boundary is essential to creating a convincing
filled region. This algorithm prioritizes regions that have strong
patterns near the boundary so that the consistency of these
patterns is preserved.

Early attempts at image inpainting use diffusion to propagate
patterns inward [3]], [4], [5]. These methods propagate regions
of similar color (known as isophotes) inwards using the
Navier-stokes equation. This method, adopted from the study
of heat transfer, uses the pixel colors on the boundary as
the “boundary condition” and allows those colors to naturally
propagate inwards. Diffusion methods can preserve patterns
such as lines and are quite effective at filling small regions,
but replacing large objects can lead to a blurry result.
Texture-synthesis methods aim to improve on this by gen-
erating a unique texture to fill the target region [6], [7],
[8]. The goal of these methods is to use the known pixel
values, and calculate the best-fit texture for the unknown
region. Although some methods generate the texture from
scratch, the most believable results come from filling with
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Figure 1. Fill order is an essential part of this algorithm. Using a typical
“onion peel” order results in linear structures being lost inside the target
region. Filling the areas with the strongest lines first results in correct structure
propagating the fill region.

texture patches (exemplars) from the source image. These
methods can produce a believable texture, but the structure
of the isophotes is usually lost. The algorithm proposed by
Criminsi et al. combines the strengths of these two methods,
and can create believable exemplar-based textures while also
preserving the isophotes at the target boundary.

The current state-of-the-art in image inpainting uses Gen-
erative Adversarial Networks (GANSs) to fill in the missing
regions [10], [11]], [12]], [13]. These methods consist of two
deep neural networks: one generator and one discriminator.
The generator takes in an image with missing portions (as
specified by the object removal mask) and attempts to generate
a new image where the missing portions are filled in. During
training, the discriminator then takes the filled-in image and
outputs a measure of how believable the image is. Through
joint training, these two networks can learn to generate images
from the missing portions that are indistinguishable from the
ground truth to the human eye. In this project, I won’t be
examining these methods, but it’s worth noting that they can
offer significantly better performance than the non-machine
learning method implemented here.

II. METHODS AND THEORY

The algorithm can be summarized as follows: First, identify
the target boundary, which is the line separating the target
region and the source image. Next, compute the priority of
each pixel on the boundary and select the boundary point with
the highest priority. Lastly, copy the exemplar from the source
that best matches the known pixels around point and update the
priority values. These steps are then repeated until the entire
target region has been filled. All calculations are explained in
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detail in the following sections.

Before beginning the iteration, Criminsi et al. specifies that the
size of the target region ¥,, must be chosen. This area is 9x9
by default but should be chosen to be larger than the smallest
resolvable texture element (texel) in the image. To standardize
my implementation, I used the rule

texel_size = min(img.shape)/30

and I round this value to the nearest odd number. This method
results in a 9x9 texel when a 256x256 image is used, and
a correspondingly larger texel for larger images. This is an
improvement that I made over the original implementation to
minimize the need for user input.

In order to determine the target boundary (denoted 62), I chose
to use cv2.findContours for simplicity. Since this step is
not the focus of the algorithm and well-known edge detection
tools exist, I chose not to implement this from scratch. Specif-
ically, the contour filtering of OpenCV is essential because
I had to ensure the contour is continuous and has width of
one pixel for the following step. The result of this operation
is a dense list of pixel values of shape [numContours,
numPoints, 1, 2], where the last axis contains the (u,v)
pixel locations of the boundary.

As shown in figure [} an essential aspect of this algorithm
is the filling order. Criminsi et al. proposes a measure called
the priority to determine this. Given a point p on the target
boundary §€2, the priority P is the product of the confidence
C and the data D terms:

P(p) =C(p) * D(p)

where

L
qu‘llpﬂ(r—ﬂ) C(a) D(p) = M

O =
(p) ] , -

|W,| is the area of the target region W, c is a normalization
factor of 255, n,, is the vector normal to the fill front §£2, and
V1, is the unit vector in the direction of the isophote from the
region I N W, Figure 2] specifies all the notation pictorially.
The confidence term essentially measures how confident the
algorithm is in its predictions. The confidence term C' is
initialized to be O for points in the target region and 1 for points
in the source region. Because the target region is filled inwards
from the outer boundary, the confidence values naturally decay
as the algorithm precedes further inwards. Also, the confidence
value is higher when there are more source pixels in the target
window, so this term prioritizes convex regions that have more
known pixels than unknown pixels. This way, the algorithm
can start by filling the easier region, and fill the hardest regions
last to avoid propagating potential mistakes.
The data term is a measure of the linear structure in the
target window. This term prioritizes pixels that have isophotes
protruding into the target window. Filling these areas first
allows the algorithm to maintain lines and other structures
at the boundary of the target region. Figure [3] shows how the
data term prioritizes these structures and leads to continuous

Z

Figure 2. Notation diagram. Given the patch W;, np is the normal to the
contour 6€2 of the target region Q and VI, is the isophote (direction and
intensity)at point p. The entire image is denoted with /. Figure taken directly
from Criminisi et al.

Figure 3. Preservation of linear structures. The original image is on the left.
The data term prioritizes the regions that include the pole, since those regions
have the strongest isophotes. These regions are filled first, so that the pole can
be propagated continuously through the target region. The middle image is
40 iterations in, and the right image is the final result. Any ghosting artifacts
in the final result are due to the low image resolution, since the provided
resolution (191x284) means that the gap between the two signs is only one
pixel wide.

linear structures.
In order to calculate the normal n,, of the boundary, I use

(pz - pi—l) X (0, 07 1)

|(pi — pi—1) % (0,0,1)]

where p; is the 3D pixel coordinate (u,v,0). Criminisi et al.
suggest using a gaussian filter to ensure that aliasing of the
boundary don’t cause the normals to change too quickly. I
used a moving average filter of size 2 to accomplish this. A
visualization of the calculated normals is given at the end of
this paper, in figure [0}

The isophote VI, is calculated similarly. First, I get the
gradient image VW, of the target area (9x9 by default)
surrounding point p. The most prominent linear structure is
then arg max(V ¥, ). Since this vector is a gradient, it will be
aligned perpendicular to the strongest line in the image. I then
rotate it to align with the linear structure with

v _ I8 max(V¥,) x (0,0,1)
P largmax(V¥,) x (0,0,1)]

where again the all vectors are in 3D coordinates (u,v,0).
The amplitude of this vector indicates how strong the linear

P —
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Figure 4. Result of the isophote calculation. The isophote unit vector (green)
is aligned with the most prominent lines in the image
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Figure 5. The distance image. Higher distances are displayed in yellow and
smaller are in blue. The target window is shown in the yellow box and the
best-fit exemplar is the blue box. Note how the best-fit exemplar is centered
around the point with the smallest disance. These values will be copied into
the yellow box and will propagate the linear structure into the target region.

structure are in the target window. I found that I achieved better
performance by using the 90th percentile of the gradient, rather
than the maximum, to filter out any effects from noise. Figure
M) shows the results of my isophote calculation. Note how the
green isophote vector aligns with the most prominent linear
structure in the window.

Once the point p with highest priority has been chosen, the
algorithm searches for the best-match exemplar to fill the target
region with. The best-fit is defined as

U; = argmind(¥;, ¥,)
V,Ed

where d is the sum of squared distances (SSD) of the two
image windows in the CIE Lab color space. Figure [5| provides
a visualization of this distance metric. The CIE Lab color
space is used because distances are more meaningful than
with RGB values due to the perceptual uniformity property.
This is the most expensive calculation of the entire algorithm
since every pixel window in the source image is considered
and compared against the target window. Once the best-fit is
found, the pixel values are directly copied from the source
window to any unknown pixels in the target region.

After the pixel values are filled, the confidence value is
updated for every pixel in the target window. The update rule

« Extract the manually selected initial front 5Q°.
« Repeat until done:
1a. Identify the fill front 6Q. If Qf = (), exit.
1b. Compute priorities P(p) Vp € Q.
2a. Find the patch ¥y with the maximum priority,
i.e., p = arg maxpesot P(p).
2b. Find the exemplar ¥4 € ® that minimizes d(¥p, Uyq).
2¢. Copy image data from ¥g to ¥ Vp € W N
3. Update C(p) Vp € TN

Figure 6. Pseudocode of the inpainting algorithm

is

C(p) =C(p)
and this specifies that every pixel in the target window gets
assigned the confidence previously held by the boundary point

p. Each step is then repeated until the entire target region has
been filled. The algorithm pseudocode is shown in figure [6]

VpE\I’ﬁﬂQ

III. RESULTS

In order to test the correctness of my implementation, I
tested my algorithm on the same images from the original
paper. As shown in figure[7} my implementation produces very
similar results as the original paper. Specifically, the isophotes
of the pole are correctly propagated through the target region,
which indicates that my calculation of the priority and filling
order are correct. In each image, the target region is replaced
with a believable texture that is contextually consistent. Note
that the images may vary slightly from the original paper due
to slight differences in the image mask and the target window
size, which was not specified for all images.

I have ordered the images in progression of best-to-worst. In
the images of the river and the man jumping, my implementa-
tion produced better reconstructions than those in the original
paper. The riverbank in the first image appears to be more
continuous than the jagged boundary shown in Criminisi et
al. Additionally, the shoreline of the lake in the second image
does not protrude into the lake in my implementation, and the
blurry area above the barn is absent.

To my eye, the “Japanese animation” image is of equal quality
to the original paper. In both my image and Criminisi et al’s,
there are areas that appear blurry or seem to have artifacts due
to the complex background.

In the last two images, my implementation achieved worse
results than the original. In the image of the dog, there are
some ghosting artifacts near the sign post. I believe this is
due to the low resolution of the image. All images were taken
directly from Criminisi et al.’s paper, so I am working with
a lower resolution image. This means that the algorithm has
less data to compare with during the exemplar search, so the
exemplar-matching does not find as good of a match.

The image of the woman in front of water was my worst
performing image. The algorithm correctly replaces the texture
of the water behind the woman, but it seems to have trouble
here connecting the lines. I believe this could be due to errors
in my normal calculation, because if the normals of the image
are off, the lines could get slightly skewed. However, the lines
are propagating into the target region correctly, so it could
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Figure 7. Results of the image inpainting algorithm. Input and mask are shown in the top row. My implementation is the middle row. Examples from Criminisi

et al. are shown on the bottom.

just be that the target region is too wide for them to connect
reliably.

I considered using some quantitative measure such as mean-
squared-error to determine the quality of my inpainting results,
but due to the lack of ground-truth images and the fact that
Criminisi et al. also did not include quantitative results, I have
left this aspect to future work. In addition to my tests on
the original paper’s images, I used images from the Places
365 dataset [9] for further testing (shown in figure [8). These
images enabled me to test on large color images where the
background may be more complex. The image size of this
dataset is approximately 1100x800, so it was a challenge to
remove objects that appear much larger than the images in
figure [7]

In the image of the hotel lobby, the reconstruction is very
good close to the target boundary. The blue lines are correctly
propagated into the target region and the texture of the tiles
appears to be correct. However, the reconstruction breaks
down near the center of the images and especially around the
chair because there are not any exemplars that match this area
well. This is an example of an image where GANs would
produce much better results because they would be able to
recognize the portion of the chair and fill in the rest, even
though a similar chair does not exist in the original image.
In hay bail image, the algorithm correctly connects the green

lines of the trees and the bright yellow of the wheat. There are
some artifacts near the image center, again due to the large and
complex image, but overall I think it is a decent reconstruction.

IV. DISCUSSION

Although my implementation achieved similar overall
performance to the original paper, I'd like to use this section
to discuss some of the difference and challenges I faced
while implementing this algorithm. The first challenge was
to minimize artifacts in the reconstructed image. An example
of these artifacts can be seen in the image of the woman
and fountain in figure [7] An additional type of artifact is
the ghosting that can be seen in the dog image in the same
figure. The most common cause for these artifacts is incorrect
fill order. While implementing the algorithm, I found many
bugs in my calculations for the confidence and data terms.
Oftentimes, the calculation would appear to work well for one
image, just to be broken by the next test image. I visualized
this calculation (shown in figure [T0) as much as possible to
ensure that it’s working properly, but there’s always a chance
that I missed something during my testing.

An additional cause of artifacts is an inadequate texel window
size. 1 attempted to automate the process of selecting this
size, but I found that my automated solution does not work
for some images. Depending on the amount of detail in the
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Figure 8. Results on additional images. Input and mask are shown in the top row. Results of my implementation is the bottom row.

images, the end user may still need to adjust the window size
to eliminate artifacts. For example, in the image of the hotel,
I had to make the target window smaller so that the people
weren’t unnaturally replicated inside the target window.
Another area that I spent time improving is the case of
objects that touch the border of the image. In this scenario,
the exemplar comparison fails because there is no data
outside the image boundary to compare to. In this case, I
set the confidence value to zero because there are no points
to sum over. This results in the edge points being filled
last, and therefore the edge does not significantly impact
the reconstruction of the entire target. A downside of this
approach is that there can be a small sliver of the original
object left over (as seen in the woman and fountain image),
but I accepted this compromise, as dealing with the edge case
in other means would require significant modifications to my
implementation.

An area of evaluation for any implementation is the algo-
rithm’s time-performance. As mentioned in the methods sec-
tion, finding the best-fit exemplar is the most time-consuming
step, so I spend some time attempting to optimize this process.
For the river image in figure [7] Criminisi et al. Report that
their algorithm fills the region in 2 seconds. In comparison,
my implementation took 90 seconds to fill the same region.
Additionally, to fill image of the man jumping, the original
paper claims an 18 second runtime, and my algorithm took 8
minutes.

Before discussing how I aimed to improve the runtime ef-
ficiency, I’d like to note that my implementation was not
multithreaded. I did not explore this option since I have not had
experience with parallelizing code in the past, but this could be
an additional reason why my implementation takes longer to
run than Criminisi’s. If the exemplar search were parallelized,
the code would take approximately a minute to run on an 8

thread processor, which is much closer to Criminisi’s reported
time.

I attempted to improve on this by vectorizing the exemplar
searching calculation. My first attempt at this was to create
a 4D array that stored the neighborhood around each pixel.
Each image would then be of shape [imgH, imgW, 3
(channels), size?] and the best-fit exemplar would be

arg min <Z(I[z’,j, k1] — W, [k, z1)2>
bJ ol

where I[i,j, k1] = U,[k,l] at point ¢ = [i,j]. This
worked well for small images, but I ran into an out-of-memory
error when running on images larger than 1000x1000. After
attempting to decrease the memory usage by saving fewer
values, the final method was not significantly faster than a
brute-force search, due to having to update my 4D matrices
in each iteration. I opted to instead define a stride as

stride = max(|size/9],1)

The max function ensures that the stride is greater than or
equal to one, and the floor and division operators scale the
stride according to the texel size. For texels up to size 18, a
stride of 1 is used, so this value only speeds up the runtime on
larger images. Other algorithms for image inpainting can take
1-2 hours to run on a 384x256 image, so my implementation
still makes a considerable improvement on those.

V. CONCLUSION

In this project report I successfully implemented the image
inpainting algorithm presented by Criminisi et al. My im-
plementation is able to fill the target region with believable
textures that are contextually consistent so that oftentimes
they are indistinguishable to the human eye. This texture is
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generated by filling the target region in order defined by each
pixels calculated priority, selecting the best-fit exemplar from
the source region, and performing a direct copy of exeplars
from the source to the target region. My implementation
has a reasonable runtime, running much faster than previous
image inpainting algorithms, although being slower than the
implementation in the original paper. Further work includes
improving this runtime by parallelizing the exemplar search,
and potentially using machine learning techniques to improve
the inpainting quality and to eliminate the need for the user
to select objects for removal. Overall, my implementation
reproduced the visual fidelity of the results in the original
paper, and proved effective on additional test images from the
Places 365 dataset.

VI. LINKS

Project Video: https://youtu.be/wLUDY;jY6nEg
Github: https://github.com/luigman/image-inpainting
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Figure 9. Visualization of the normal calculation step.

Figure 10. Visualization of the confidence calculation. Notice how the values
decay as you move further into the target region.
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