Math 632 Spring 2020 Homework 6

Due Sunday, March 29, 4 PM

Note that problem 5(c) is a little different from the rest: you need to combine ideas in a way that goes beyond what we have done thus far in the course.

1. Let X and Y be discrete random variables with joint probability mass function

$$f(a,b) = P(X = a, Y = b) = \begin{cases} a^b/20 & \text{if } a \in \{1,2,3\}, b \in \{1,2\}, \\ 0 & \text{if } (a,b) \notin \{1,2,3\} \times \{1,2\}. \end{cases}$$

- (a) Find the function H(y) = E[X|Y = y] for the values y such that P(Y = y) > 0.
- (b) Compute the probability mass function of the random variable Z = E[X|Y].
- **2.** Let X_1, X_2, \ldots be a sequence of discrete bounded i.i.d. random variables. Let $S_n = X_1 + \cdots + X_n$, $n \ge 1$.
 - (a) Use the definition of conditional expectation to verify that $E[X_i|S_n] = E[X_1|S_n]$ for all i = 1, ..., n and $n \ge 1$. *Hint:* Start by showing that $P(X_i = x|S_n = y) = P(X_1 = x|S_n = y)$. The observation that $S_n - X_i$ and $X_2 + \cdots + X_n$ have the same distribution can be useful.
 - (b) Use the above result to compute $E[X_1|S_n]$. Then find a formula for $E[S_m|S_n]$ for all $1 \le m \le n$.
- **3.** Let Y_0, Y_1, \ldots be i.i.d. random variables with possible values $\{-1, 2\}$ and distribution

$$P(Y_1 = 2) = \frac{1}{3}, \quad P(Y_1 = -1) = \frac{2}{3}$$

Which of the following sequences are martingales with respect to $\{Y_k : k \ge 0\}$? Explain why.

- (a) $M_n = Y_0^n, n \ge 0;$
- (b) $V_n = \prod_{k=0}^n (1+Y_k), n \ge 0;$
- (c) $W_n = Y_n, n \ge 0;$
- 4. Suppose that $\{X_k, k \ge 1\}$ is a sequence of i.i.d. random variables with $P(X_1 = \pm 1) = \frac{1}{2}$. Let $S_n = \sum_{k=1}^n X_k$ (i.e. $S_n, n \ge 1$ is a symmetric simple random walk with steps $X_k, k \ge 1$).
 - (a) Compute $E[S_{n+1}^3|X_1, \ldots, X_n]$ for $n \ge 1$. Hint: Check out Example 3.8 in the lecture notes (Version Mar/04/2020) for inspiration.
 - (b) Find deterministic coefficients a_n, b_n, c_n possibly depending on n so that $M_n = S_n^3 + a_n S_n^2 + b_n S_n + c_n$ is a martingale with respect to $\{X_k, k \ge 1\}$.

- **5.** Let $\{X_k\}_{k\geq 1}$ be i.i.d. random variables such that $X_k > 0$, $E[X_k] = 1$ and $E[\log X_k] < 0$.
 - (a) Give an example of a random variable X_k that satisfies the assumptions above and has exactly two values.
 - (b) Give a justification for why the limit

$$Z = \lim_{n \to \infty} \prod_{k=1}^n X_k$$

exists with probability one.

(c) Find the exact value of Z. Hint: Applying the SLLN to the random variables $\{\log X_k\}_{k\geq 1}$ can give you useful information.

Math 632 HW 6 Luis Gurman

$$\begin{split} \begin{array}{l} (1) \quad (2) \quad H(y) &= E[\mathbf{X}] | Y_{=y}^{-1}] = \sum_{\mathbf{x}} K \left(P(\mathbf{X} = K | Y_{=y}) \right) & P(Y_{=y}) = \sum_{\mathbf{x}} P(X_{=x} | Y_{ey}) \\ &= \sum_{\mathbf{x}} K \left(\frac{P(\mathbf{X} = K, Y_{=y})}{P(Y_{=y})} \right) & P(Y_{=1}) = \frac{1}{20} + \frac{2^{\mathbf{x}}}{20} + \frac{3}{20} = \frac{7}{10} \\ &= \frac{1}{P(Y_{=y})} \left(1 \cdot P(\mathbf{X} = 1, Y_{=y}) + 2 \cdot P(\mathbf{X} = 2, Y_{=y}) + 3 \cdot P(\mathbf{X} = 3, Y_{=y}) \right) \\ &= \frac{1}{P(Y_{=y})} \left(\frac{1}{20} + 2 \cdot \frac{2^{\mathbf{y}}}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{20} + 2 \cdot \frac{2^{\mathbf{y}}}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + \frac{3}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + \frac{3}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + \frac{3}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + \frac{3}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + \frac{1}{20} + \frac{3}{20} + 3 \cdot \frac{3^{\mathbf{y}}}{20} \right) \\ &= \frac{1}{20} \left(\frac{1}{2} + 2 \cdot \frac{1}{20} + \frac{1}$$

$$E[X_{1}|S_{n}] = E[S_{n}|S_{n}] - E[S_{n}-X_{1}|S_{n}] \qquad by \ linearly$$

$$= E[S_{n}|S_{n}] - E[X_{2}+\dots+X_{n}|S_{n}] \qquad since \ S_{n}-X_{1} \ ord \ X_{2}+\dots+X_{n} \ are$$

$$= E[S_{n}-X_{2}-\dots-X_{n}|S_{n}] \qquad by \ linearly$$

$$\boxed{E[X_{1}|S_{n}] = E[X_{1}|S_{n}]}$$

$$b) \ post \ a \ tells \ s \ that \ E[X_{1}|S_{n}] = \dots = E[X_{n}|S_{n}]$$

$$we \ oldon \ have \ E[S_{n}|S_{n}] = E[X_{1}|S_{n}] = \dots = E[X_{n}|S_{n}]$$

$$we \ oldon \ have \ E[S_{n}|S_{n}] = E[X_{1}|S_{n}] = \dots = E[X_{n}|S_{n}]$$

$$b) \ post \ a \ tells \ s \ that \ E[X_{1}|S_{n}] = \dots = E[X_{n}|S_{n}]$$

$$we \ oldon \ have \ E[S_{n}|S_{n}] = E[X_{1}|S_{n}] = \dots = E[X_{n}|S_{n}]$$

$$b) \ E[S_{n}|S_{n}] = E[X_{1}+\dots+X_{n}|S_{n}]$$

$$E[S_{n}|S_{n}] = E[X_{1}+\dots+X_{n}|S_{n}]$$

$$= m \ E[X_{1}|S_{n}] = \dots = E[X_{n}|S_{n}]$$

3) a)
$$M_n = f(Y_n)$$

 $E[M_n] = E[Y_n^n] < \infty$
 $First two properties hill,
 $E[M_{n+1} | Y_n + Y_n] = E[M_{n+1} | Y_n]$ since M_n is independent of $Y_n \neq n > 0$
 $= M_{n+1}$ since M_{n+1} is a function of Y_n
 $= Y_n^{n+1} \neq M_n$
 M_n is not a Mediagole
b) By inspection, first two properties hold.
 $E[V_{n+1} | Y_n + Y_n] = \frac{1}{3}(1+2)\prod_{k=0}^{n}(1+Y_k) + \frac{2}{3}(1-1)\prod_{k=0}^{n}(1+Y_k)$
 $= \prod_{k=0}^{n}(1+Y_k)$
 $= V_n \rightarrow V_n$ is a Martingle$

C) By inspections first two properties hold.
$$V$$

 $E[W_{n+1}[Y_0...Y_n] = E[W_{n+1}]$ since W_{n+1} is independent of $[Y_{0...Y_n}]$
 $= E[Y_{n+1}]$
 $= E[Y_n]$ since Y_i 's are iid
 $\neq W_n$ since W_n is random and $E[Y_n]$ is a constant.
 $\rightarrow W_n$ is not a martingale.

$$\begin{aligned} & \text{(Y)} \in \left[\sum_{n=1}^{3} |X_{1} - \frac{1}{2} X_{n} \right] = E\left[\left(\sum_{n} + X_{n+1} \right)^{3} |X_{1} - X_{n} \right] \\ &= E\left[\sum_{n=1}^{3} |X_{n}^{-} \right] + E\left[3 \sum_{n=1}^{n} X_{n+1} |X_{n}^{-} \right] + E\left[3 \sum_{n=1}^{n} X_{n+1}^{-} |X_{n}^{-} \right] + E\left[X_{n+1}^{-3} |X_{n}^{-} \right] \\ &= \sum_{n=1}^{3} + 3 \sum_{n=1}^{2} E\left[X_{n+1} \right]^{n+1} + 3 \sum_{n=1}^{n} E\left[X_{n+1}^{-1} \right] + E\left[X_{n+1}^{-3} \right]^{n+1} \\ &= \sum_{n=1}^{3} + 3 \sum_{n=1}^{n} \left[E\left[\sum_{n=1}^{3} |X_{n}^{-} - X_{n}^{-} \right] \right] = S_{n} \left(\sum_{n=1}^{2} |X_{n}^{-} - X_{n}^{-} \right] \\ &= \sum_{n=1}^{3} + 3 \sum_{n=1}^{n} \left[E\left[\sum_{n=1}^{3} |X_{n}^{-} \right] + C_{n+1} \\ &= \sum_{n=1}^{n} (\sum_{n=1}^{n} |X_{1}|^{-n} - X_{n}^{-} \right] \\ &= \sum_{n=1}^{n} (\sum_{n=1}^{n} |X_{1}|^{-n} - X_{n}^{-1} \right] \\ &= \sum_{n=1}^{n} (\sum_{n=1}^{n} |X_{1}|^{-n} - X_{n+1}^{-n} + C_{n+1} - \sum_{n=1}^{3} + \alpha_{n} \sum_{n=1}^{n} + C_{n+1} \\ &= \sum_{n=1}^{n} (\sum_{n=1}^{n} |X_{1}|^{-n} - X_{n+1}^{-n} + C_{n+1} \\ &= \sum_{n=1}^{n} (\sum_{n=1}^{n} |X_{1}|^{-n} + C_{n+1} - \sum_{n=1}^{n} + \alpha_{n} \sum_{n=1}^{n} + C_{n+1} \\ &= \sum_{n=1}^{n} (\sum_{n=1}^{n} |X_{1}|^{-n} + C_{n+1} - \sum_{n=1}^{n} + \alpha_{n} \sum_{n=1}^{n} + C_{n+1} \\ &= \sum_{n=1}^{n} (\sum_{n=1}^{n} |X_{1}|^{-n} + C_{n+1} - \sum_{n=1}^{n} + \alpha_{n} \sum_{n=1}^{n} \sum_$$

$$S(x) = \sum_{\substack{n \neq 1 \\ n \neq n}} \frac{P(x = x)}{\frac{1}{2}} \qquad E[x] = \frac{\alpha_1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = 1 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} = -0.83 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = -0.83 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = -0.83 \quad x$$

$$E[hx] = \frac{1}{2} + \frac{1}$$