Math 632 Spring 2020 Homework 6

Due Sunday, March 29, 4 PM

Note that problem 5(c) is a little different from the rest: you need to combine ideas in a way that goes beyond what we have done thus far in the course.

1. Let X and Y be discrete random variables with joint probability mass function

$$
f(a, b)=P(X=a, Y=b)=\left\{\begin{array}{lr}
a^{b} / 20 & \text { if } a \in\{1,2,3\}, b \in\{1,2\}, \\
0 & \text { if }(a, b) \notin\{1,2,3\} \times\{1,2\} .
\end{array}\right.
$$

(a) Find the function $H(y)=E[X \mid Y=y]$ for the values y such that $P(Y=y)>0$.
(b) Compute the probability mass function of the random variable $Z=E[X \mid Y]$.
2. Let X_{1}, X_{2}, \ldots be a sequence of discrete bounded i.i.d. random variables. Let $S_{n}=X_{1}+\cdots+X_{n}$, $n \geq 1$.
(a) Use the definition of conditional expectation to verify that $E\left[X_{i} \mid S_{n}\right]=E\left[X_{1} \mid S_{n}\right]$ for all $i=1, \ldots, n$ and $n \geq 1$.
Hint: Start by showing that $P\left(X_{i}=x \mid S_{n}=y\right)=P\left(X_{1}=x \mid S_{n}=y\right)$. The observation that $S_{n}-X_{i}$ and $X_{2}+\cdots+X_{n}$ have the same distribution can be useful.
(b) Use the above result to compute $E\left[X_{1} \mid S_{n}\right]$. Then find a formula for $E\left[S_{m} \mid S_{n}\right]$ for all $1 \leq m \leq n$.
3. Let Y_{0}, Y_{1}, \ldots be i.i.d. random variables with possible values $\{-1,2\}$ and distribution

$$
P\left(Y_{1}=2\right)=\frac{1}{3}, \quad P\left(Y_{1}=-1\right)=\frac{2}{3} .
$$

Which of the following sequences are martingales with respect to $\left\{Y_{k}: k \geq 0\right\}$? Explain why.
(a) $M_{n}=Y_{0}^{n}, n \geq 0$;
(b) $V_{n}=\prod_{k=0}^{n}\left(1+Y_{k}\right), n \geq 0$;
(c) $W_{n}=Y_{n}, n \geq 0$;
4. Suppose that $\left\{X_{k}, k \geq 1\right\}$ is a sequence of i.i.d. random variables with $P\left(X_{1}= \pm 1\right)=\frac{1}{2}$. Let $S_{n}=\sum_{k=1}^{n} X_{k}$ (i.e. $S_{n}, n \geq 1$ is a symmetric simple random walk with steps $X_{k}, k \geq 1$).
(a) Compute $E\left[S_{n+1}^{3} \mid X_{1}, \ldots, X_{n}\right]$ for $n \geq 1$.

Hint: Check out Example 3.8 in the lecture notes (Version Mar/04/2020) for inspiration.
(b) Find deterministic coefficients a_{n}, b_{n}, c_{n} possibly depending on n so that $M_{n}=S_{n}^{3}+a_{n} S_{n}^{2}+$ $b_{n} S_{n}+c_{n}$ is a martingale with respect to $\left\{X_{k}, k \geq 1\right\}$.
5. Let $\left\{X_{k}\right\}_{k \geq 1}$ be i.i.d. random variables such that $X_{k}>0, E\left[X_{k}\right]=1$ and $E\left[\log X_{k}\right]<0$.
(a) Give an example of a random variable X_{k} that satisfies the assumptions above and has exactly two values.
(b) Give a justification for why the limit

$$
Z=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} X_{k}
$$

exists with probability one.
(c) Find the exact value of Z. Hint: Applying the SLLN to the random variables $\left\{\log X_{k}\right\}_{k \geq 1}$ can give you useful information.
1)
b)

$$
\begin{array}{rl}
Z & =E[X \mid Y] \\
& =\frac{1+2^{Y+1}+3^{Y+1}}{20\left(\frac{-3}{10}(Y-z)+\frac{7}{10}(Y-1)\right)} \\
Z & P(Z=z) \\
\hline 7 / 3 & 3 / 10 \\
18 / 7 & 7 / 10
\end{array}
$$

$$
\text { Check: } E[2]=\frac{7}{3} \frac{3}{10}+\frac{18}{7} \cdot \frac{7}{10}=2.5
$$

$$
E[x]=\frac{1}{10}+\frac{6}{10}+\frac{18}{10}=2.5
$$

$$
\begin{aligned}
& P(x=1)=\frac{1}{20}+\frac{1}{20}=\frac{1}{10} \\
& P(x=2)=\frac{2}{20}+\frac{4}{20}=\frac{3}{10} \\
& P(x=3)=\frac{3}{20}+\frac{1}{20}=\frac{6}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 0) } H(y)=E[X \mid Y=y]=\sum_{k} K P(X=k \mid Y=y) \\
& P(Y=y)=\sum_{x} P(X=x, Y=y) \\
& =\sum_{k} k \frac{P\left(X=k_{1} Y=y\right)}{P(Y=y)} \\
& P(Y=1)=\frac{1}{20}+\frac{2}{20}+\frac{3}{20}=\frac{3}{10} \\
& P(Y=z)=\frac{1}{20}+\frac{2^{2}}{2_{0}}+\frac{3^{2}}{2_{0}}=\frac{7}{10} \\
& \begin{array}{l}
=\frac{1}{P(Y=y)}(1 \cdot P(X=1, Y=y)+2 \cdot P(X=2, Y=y)+3 \cdot P(X=3, Y=y)) \\
=\frac{1}{P y}\left(1 \frac{y}{20}+2 \cdot=y=y\right.
\end{array} \\
& =\frac{1}{A Y_{y}}\left(\frac{1}{20}+2 \cdot \frac{2^{y}}{20}+3 \cdot \frac{3^{y}}{20}\right) \\
& =\frac{1}{20 P\left(Y_{-y}\right)}\left(1+2^{y+1}+3^{y+1}\right) \\
& H(y)=\left\{\begin{array}{ll}
\frac{7}{3} & \text { for } y=1 \\
\frac{18}{7} & \text { for } y=2
\end{array} \quad \longrightarrow=\frac{1+2^{y+1}+3^{y+1}}{20\left(-\frac{3}{10}(y-2)+\frac{7}{10}(y-1)\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
\text { 2) })_{d} E\left[x_{i} \mid S_{n}\right] & =E\left[S_{n} \mid S_{n}\right]-E\left[S_{n}-x_{i} \mid S_{n}\right] & & \text { by lincolly } \\
& =E\left[S_{n} \mid S_{n}\right]-E\left[x_{2}+\cdots+x_{n} \mid S_{n}\right] & & \text { since } S_{n}-x_{i} \\
& =E\left[S_{n}-x_{2}-\cdots-x_{n} \mid S_{n}\right] & & \text { by lirearly idat } \\
E\left[x_{i} \mid S_{n}\right] & =E\left[X_{1} \mid S_{n}\right] & &
\end{aligned}
$$

$$
=E\left[S_{n} \mid S_{n}\right]-E\left[X_{2}+\cdots+x_{n} \mid S_{n}\right] \quad \text { since } S_{n}-x_{i} \text { and } X_{2}+\cdots+x_{\text {, }} \text { are }
$$ idationly distribetes by linearly

b) part a tell's is that $E\left[X_{1} \mid S_{n}\right]=\cdots=E\left[X_{n} \mid S_{n}\right]$

We alo the $E\left[S_{n} \mid S_{n}\right]=E\left[X_{1} K_{n}\right]+\cdots+E\left[X_{n} \mid S_{n}\right]$ by lireatly

$$
\begin{aligned}
& \Rightarrow s_{n}={ }_{n} E\left[x_{1} \mid S_{n}\right] \\
& \Rightarrow E\left[x_{1} \mid s_{n}\right]=\frac{s_{n}}{n}
\end{aligned}
$$

$$
\begin{aligned}
E\left[S_{m} \mid S_{n}\right] & =E\left[X_{1}+\cdots+X_{m} \mid S_{n}\right] \\
& =E\left[X_{1} \mid S_{n}\right]+\cdots+E\left[X_{m} \mid S_{n}\right] \\
& =m E\left[X_{1} \mid S_{n}\right] \\
E\left[S_{m} \mid S_{n}\right] & =\frac{m}{n} S_{n}
\end{aligned}
$$

3) a)

$$
\begin{aligned}
& M_{n}=f\left(Y_{0}\right) \\
& E[M]=E\left[Y_{0}^{n}\right]<\infty \quad \text { First two properties hin), } \\
& E\left[M_{n+1} \mid Y_{0}, Y_{n}\right]=E\left[M_{n+1} \mid Y_{0}\right] \text { since } M_{n} \text { is indegerdect of } Y_{n} \forall n>0 \\
& =M_{n+1} \text { since } M_{n+1} \text { is a function of } Y_{0} \\
& =Y_{0}^{n+1} \neq M_{n} \rightarrow M_{n} \text { is not a Modingle }
\end{aligned}
$$

b) By inspection, first two propectes hold.

$$
\begin{aligned}
E\left[V_{n+1} \mid Y_{0} \cdots Y_{n}\right] & =\frac{1}{3}(1+2) \prod_{k=0}^{n}\left(1+Y_{k}\right)+\frac{2}{3}(1-1) \prod_{k=0}^{n}\left(1+Y_{k}\right) \\
& =\prod_{k=0}^{n}\left(1+Y_{k}\right) \\
& =V_{n} \rightarrow V_{n} \text { is a Mertingole }
\end{aligned}
$$

c) By inspection, first two propertes-holl.

$$
\begin{aligned}
E\left[w_{n+1} \mid Y_{0} \ldots Y_{n}\right] & =E\left[w_{n+1}\right] \text { since } w_{n+1} \text { is independent of }\left(Y_{0+} \ldots Y_{n}\right) \\
& =E\left[Y_{n+1}\right] \\
& =E\left[Y_{n}\right] \text { since } Y_{:} \text {s are id }
\end{aligned}
$$

$\neq W_{n}$ since W_{n} is random and $E\left[Y_{n}\right]$ is a constant.
$\rightarrow W_{n}$ is not a martingale

$$
\text { 4) } \begin{aligned}
& \text { a) } E {\left[S_{n+1}^{3} \mid X_{1}, \cdots, X_{n}\right]=E\left[\left(S_{n}+X_{n+1}\right)^{3} \mid X_{1}, X_{n}\right] } \\
&=E\left[S_{n}^{3} \mid \vec{X}_{n}\right]+E\left[3 S_{n}^{2} X_{n+1} \mid \vec{X}_{n}\right]+E\left[3 S_{n} X_{n+1}^{2} \mid \vec{X}_{n}\right]+E\left[X_{n+1}^{3} \mid \vec{X}_{n}\right] \quad \text { by linearty } \\
&=S_{n}^{3}+3 S_{n}^{2} E\left[X_{n+1}\right]^{\cdots-0}+3 S_{n} E\left[X_{n+1}^{2}\right]+E\left[X_{n+1}^{3}\right]^{n 0} \\
&=S_{n}^{3}+3 S_{n} \\
& E\left[S_{n+1}^{3} \mid X_{1}, \cdots X_{n}\right]=S_{n}\left(S_{n}^{2}+3\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
& E\left[\begin{array}{lll}
M_{n+1} \mid X_{1} & \left.X_{n}\right]=M_{n} \\
\text { LHS: } E\left[M_{n+1} \mid X_{1}, \cdots x_{n}\right]=E\left[S_{n+1}^{3} \mid \vec{X}_{n}\right]+E\left[a_{n+1} S_{n+1}^{2} \mid \vec{X}_{n}\right]+E\left[b_{n+1} S_{n+1} \mid \vec{X}_{n}\right]+c_{n+1} \\
\qquad=S_{n}\left(S_{n}^{2}+3\right)+a_{n+1}\left(S_{n}^{2}+1\right)+b_{n+1} S_{n}+c_{n+1} \quad \text { using resclt fiom } 4 a \text { and } \\
\text { example } 3.8
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}\left(S_{n}^{2}+3\right)+a_{n+1}\left(S_{n}^{2}+1\right)+b_{n+1} S_{n}+c_{n+1}=S_{n}^{3}+a_{n} S_{n}^{2}+b_{n} S_{n}+c_{n} \\
& a_{n+1} S_{n}^{2}+\left(b_{n+1}+3\right) S_{n}+\left(c_{n+1}+a_{n+1}\right)=a_{n} S_{n}^{2}+b_{n} S_{n}+c_{n}
\end{aligned}
$$

Motching coefficients, we get:

$$
a_{n+1}=a_{n} \quad b_{n+1}=b_{n}-3 \quad c_{n+1}=c_{n}-c_{n+1}
$$

We con then plak starting a, b., co volues and

$$
a_{n}=a_{0} \quad b_{n}=b_{0}-3 n \quad c_{n}=c_{0}-n a_{0}
$$

5) a)

X	$P(X=x)$
0.1	$1 / 2$
1.9	$1 / 2$

$$
\begin{aligned}
& E[X]=\frac{0.1}{2}+\frac{1.9}{2}=1 \\
& E[\ln X]=\frac{\ln 0.1}{2}+\frac{\ln 1.9}{2}=-0.83
\end{aligned}
$$

b) Is $M_{n}=\prod_{k=1}^{n} X_{k}$ a maitingak? First two plopalies hold

$$
\begin{aligned}
E\left[M_{n+1} \mid \vec{x}_{n}\right] & =\frac{1}{2} \cdot 0.1 M_{n}+\frac{1}{2} \cdot 1.9 M_{n} \\
& =M_{n}
\end{aligned}
$$

M_{n} is also bounded below by O since $X_{k}>0$
by the Martingale limit theorem, the limit

$$
z=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} x_{k} \text { exists w.p. } 1
$$

$$
\text { c) } \begin{aligned}
z & =\lim _{n \rightarrow \infty} \prod_{k=1}^{n} X_{k} \\
& =\lim _{n \rightarrow \infty} x_{1}^{n-m} x_{z}^{m} \quad \text { Split into two possibilities } \\
\ln z & =\ln \lim _{n \rightarrow \infty} \prod_{k=1}^{n} X_{k} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(X_{k}\right) \quad \text { by log-produnt rule } \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \underbrace{\text { call this onev Riv. So }}_{\sum_{k=1}^{n} \ln \left(X_{k}^{n}\right)} \\
= & \lim _{n \rightarrow \infty} E\left[\ln \left(X_{k}^{n}\right)\right] \quad \text { by } \text { SLLN } \\
& =\lim _{n \rightarrow \infty} \frac{1}{2} \ln \left(0.1^{n}\right)+\frac{1}{2} \ln \left(1.9^{n}\right) \\
= & \lim _{n \rightarrow \infty} \ln \left((0.1 \cdot 1.4)^{n / 2}\right) \\
z & =\lim _{n \rightarrow \infty}\left(0.19^{1 / 2}\right) \\
z & =0
\end{aligned}
$$

