
Math 632 Spring 2020 Homework 9

Due Thursday, April 30, 4 PM

Homework is to be handed in on Canvas by uploading a PDF file.

Please check the homework instructions on the course homepage. In particular, remember to observe
rules of academic integrity. You are encouraged to discuss the problems with fellow students, but
copied work is not acceptable and will result in zero credit. One can find solutions to many exercises
on the web. However, the point of the homework is to give you the problem solving practice you will
need in the exams. Hence it is not wise to take shortcuts to secure the few points that come from
homework.

Even when a problem seems easy, be sure to give some justification for your answer. Otherwise
your solution cannot get full credit.

1. This problem is for basic practice with exponential distributions. Let U ⇠ Exp(↵) and V ⇠
Exp(�) be independent. Calculate the expectation E[U · I{U<V }]. Here I{U<V } is the indicator

random variable of the event U < V .

Hint: If you are at a loss at how to proceed, then just remember that if f is the joint probability

density function of a pair of random variables (X,Y ), then for any function h,

E[h(X,Y ) ] =

ZZ

R2
h(x, y) f(x, y) dx dy.

There are also quicker ways for the task at hand, for example by using exponential races or by

conditioning. The answer is
↵

(↵+�)2 .

2. Consider the CTMC with state space be S = {1, 2, 3} and jump rates

q(1, 2) = 2, q(1, 3) = q(3, 2) = 3, q(2, 1) = 5, q(2, 3) = 1.

(The unmentioned jump rate q(3, 1) is zero, so a jump from 3 to 1 is not possible.) Let S =

min{t � 0 : Xt 6= 1} be the first time when the process is no longer in state 1. Let T = min{t �
0 : Xt = 2} be the first time the process is in state 2.

(a) Draw the arrow diagram labeled with the rates.

(b) Find the holding parameters and the routing matrix.

(c) Find the probability P1(s  S  t) for t > s > 0.

(d) Calculate E1[T ]. (The answer is
2
5 .)

Hint: There are two distinct approaches. For an ideal solution, do both.

(1) Use the jump chain and the holding times.

(2) Use the Poisson clocks attached to the arrows of the diagram. Let Txy ⇠ Exp(q(x, y))
denote an exponential random variable associated to the arrow from x to y. If T12 < T13

then the process jumps from 1 to 2 and T = T12. What is T equal to in the opposite

case T12 > T13? Formulate an expression for T that allows you to take advantage of the

calculation in problem 1.



3. A machine functions for an exponentially distributed amount of time with rate � before it fails.

When it fails, the failure is one of three types labeled i = 1, 2, 3 with probabilities 1/2, 1/3, 1/6,
respectively. Suppose a failure of type i takes an exponential amount of time with rate µi to

repair. Formulate a CTMC model for the state of the machine with state space {0, 1, 2, 3} where

state 0 means that the machine is functional and state i 2 {1, 2, 3} means that the machine is

under repair for a type i failure.

(a) Give the routing matrix and jump rates of the Markov chain.

(b) Find the stationary distribution.

(c) We come to observe a functioning machine. What is the probability that the next two

failures are of the same type?

4. There are two tennis courts in a gym. Pairs of players arrive at rate 2 per hour. Each pair

plays for an exponentially distributed amount of time with mean 1 hour. If both courts are

occupied, an arriving pair waits for a free court. If there is already one pair of players waiting,

new arrivals will leave. A waiting pair of players takes a court as soon as one becomes free.

However, a waiting pair of players waits only for an exponentially distributed amount of time

with mean 1
6 hour and then leaves if they cannot get on a court.

(a) Give the generator matrix of the Markov model with state space {0, 1, 2, 3} that keeps track

of the number of pairs of players in the system.

(b) Every pair of players pays a rate of $2 dollars per hour while using the court. What is the

long term rate of revenue of the tennis courts, in dollars per hour?

(c) Assuming that the system has been running for a very long time, what is the probability

that an arriving pair of players finds immediately a free court? What is the probability that

this pair gets to play at all? (The answer to the last question is
7
11 .)

5. Consider a two-station queueing network. Arrivals occur only at the first server and do so at

rate 2. If an arriving customer finds server 1 free he enters the system; otherwise he goes away.

When a customer is done at the first server he moves on to the second server if it is free and

leaves the system if it is not. A customer who has completed service at the second server leaves

the system. Suppose that server 1 serves at rate 1 while server 2 serves at rate 3.

(a) Formulate a Markov chain model for this system with state space {0, 1, 2, 12} where the

state indicates the servers who are busy.

For parts (b) and (c) below we do not expect rigorous solutions. Use common sense to
arrive at the correct numerical answers and explain your reasoning.

(b) In the long run what proportion of the arriving customers enter the system?

(c) In the long run what proportion of the arriving customers visit server 2?

Hint: Think of the possible states in which an arriving customer finds the system and the

probability that they reach server 2.

6. Consider an M/M/1 queueing system with infinitely many servers (see Durrett Example 4.17

on page 168) where customers arrive at rate �, and the service time of each customer is a rate

µ exponential random variable. Let Xt denote the number of customers in the system at time

t. Assume that X0 = 0.

(a) Write down explicitly the Kolmogorov forward equations for this process.



(b) Set m(t) = E0[Xt]. Prove that

m0
(t) = �� µm(t).

Hint: Use the equations from (a). Feel free to di↵erentiate the series term by term.

(c) Solve the di↵erential equation for m(t).
Hint: Find

d
dt(m(t)eµt) first.

(d) Evaluate limt!1m(t). The stationary distribution for Xt is given in Example 4.17 of

Durrett’s book. Compare the limit you found to the expected value of the stationary

distribution.














