
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022 1

Robotic Embodiment of Human-Like Motor Skills
via Reinforcement Learning

Luis Guzman1, Vassilios Morellas2, and Nikolaos Papanikolopoulos1

Abstract—Current methods require robots to be repro-
grammed for every new task, consuming many engineering
resources. This work focuses on integrating real and simulated
environments for our proposed ”Internet of Skills,” which enables
robots to learn advanced skills from a small set of expert demon-
strations. By expanding on recent work in the areas of Learning
from Demonstrations (LfD) and Reinforcement Learning (RL),
we can train robot control policies that can not only effectively
complete a given task but also do so with greater performance
than the expert demonstrations used to train the policy. In this
work, we create simulated environments to train RL algorithms
for the task of inverse kinematics and obstacle avoidance. Many
state-of-the-art RL algorithms are compared, and we provide
a detailed analysis of the state space and parameters chosen.
Lastly, we utilize a Vicon motion tracking system and train the
robot agent to follow trajectories given by a human operator.
Our results show that reinforcement learning algorithms such
as proximal policy optimization can develop control policies that
are capable of complex control tasks that integrate with the real
world, an important first step towards developing a system that
can autonomously learn new skills from human demonstrations.

Telerobotics and Teleoperation, Reinforcement Learning,
Transfer Learning, Model Learning for Control, Collision
Avoidance

I. INTRODUCTION

STATE-of-the-art Reinforcement Learning (RL) algorithms
have partially addressed hard exploration problems

through greater sample efficiency and reducing approximation
error [1], but many still struggle when goals are abstract
or significant future planning is necessary. To address these
challenges, Learning from Demonstrations (LfD) emerged as
a means of determining an agent’s policy through observation
of an expert (human) demonstrator [2]. This form of learning
integrates human and machine capabilities to complement each
other in carrying out complex tasks that are too hazardous
and difficult to be performed solely by humans or robots. Our
proposed Internet of Skills (IoS) enables practical applications
of this research by utilizing motion capture technology in
order to record expert demonstrations. In this paper, we

Manuscript received: September 9, 2021; Revised December 7, 2021;
Accepted January 20, 2022.

This paper was recommended for publication by Editor Jee-Hwan Ryu
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the Minnesota Robotics Institute (MnRI), Honeywell, the
National Science Foundation, and USDA/NIFA.

1Luis Guzman and Nikolaos Papanikolopoulos are with the Department of
Computer Science and Engineering, University of Minnesota,
{ guzma102 | papan001 }@umn.edu

2 Vassilios Morellas is with the Department of Electrical and Computer
Engineering, University of Minnesota. morellas@umn.edu

Digital Object Identifier (DOI): see top of this page.

(a) 5 DOF robot (b) 7 DOF Kinova Gen3 Robot

Fig. 1: Example MuJoCo virtual environments. The target
point is shown in green, and the obstacle is in blue.

build the foundations of this system by training RL control
policies for a hand following and obstacle avoidance task. We
implement this policy on a Kinova Gen3 Robot, demonstrating
a working sim-to-real prototype that replicates human motion
on a physical robot. This research will enable future methods
which use human demonstrations to teach robots to complete
new skills autonomously.

Currently, training a robot to perform a new task usually
requires some form of teleoperation [3], where an operator
is required to either set robot joint angles directly by ma-
nipulating a custom controller or set end-effector coordinates
that can then be used to solve robot joint angles through
inverse kinematics. Both of these methods are specific to
a given robot’s actuator layout (phenotype), and often an
entirely new teleoperation system must be designed to control
a robot with a different configuration. Additionally, having
the operator perform a task using counter-intuitive human-
machine interfaces lacks the fluidity and nuance of certain
gestures and requires the operator to become accustomed to the
teleoperation system. For these reasons, a system that allows
human operators to seamlessly integrate and control robots of
any phenotype is desired.

Forming this connection between human and robot actions
requires a shared language where human-given commands can
understood by any robot; however, human action is difficult to
represent in an analytic form. Learning from demonstrations
is a technique for determining a robot agent’s control policy
from human (expert) demonstrations. It shares similarity with
reinforcement learning, although in RL, a policy is learned
through interaction and exploration in a training environment
rather than from expert demonstrations. In both RL and LfD,
the robot’s surroundings are represented by a state S and the
robot performs actions A. The same state and action space can
be used to quantify the experience of a human demonstrator. A

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

policy π maps the robot’s observed surroundings to an action
π : S → A. The goal is to learn a policy that either optimizes
a certain reward function (RL) or one that performs similar
actions to an expert demonstrator (LfD).

Although this paper focuses on reinforcement learning, it is
important to note the benefits of using demonstrations, since
it provides context into the larger goals of this project. Using
expert demonstrations has been shown to improve conver-
gence rates and performance, especially in high-dimensional
tasks such as object manipulation [2]. Furthermore, using
reinforcement learning algorithms simultaneously with expert
demonstrations can produce a policy that exceeds the perfor-
mance of ”imperfect” expert demonstrations [4]–[7]. Possible
benefits include higher precision than humanly-attainable and
the filtering of hand-shaking when performing delicate ma-
nipulation tasks. In this paper, we provide detailed analysis of
reinforcement learning without demonstrations on the tasks of
inverse kinematics and obstacle avoidance, which will inform
future publications that utilize LfD.

We draw inspiration from Sangiovanni et al. [8], which
uses reinforcement learning to solve inverse kinematics and
obstacle avoidance. Particularly, our choice of reward function
is inspired by this work. They use a method known as nor-
malized advantage functions (NAF), which is similar to deep
Q-learning for continuous tasks. We utilize more recent RL
algorithms that have been shown to have better convergence
rates and performance than NAF. Furthermore, we propose
significant modifications to the method, which improves agent
performance and stability, and we implement the policy on a
physical Kinova Gen3 robot.

Proximal Policy Optimization (PPO) [9] is an example of an
on-policy reinforcement learning algorithm. It is characterized
by a policy update equation that includes a clipping parameter,
which ensures that no single policy update is too large and
destroys the policy. Previous work has shown success when
applying PPO to robot control tasks, such as object manipula-
tion [10] and control of a humanoid robot [11]. PPO is robust
to hyperparameters, so it requires very little tuning in order to
get optimal performance.

Twin delayed deep deterministic policy gradients (TD3)
[1] is a modified version of the deep deterministic policy
gradients (DDPG) [12] algorithm. It uses two critic networks
in order to minimize the Q-function approximation error,
and they delay the policy updates to every-other update of
the critic network to further decrease the error. It features a
higher sample efficiency than PPO since it is an off-policy
algorithm and thus stores its experience in a replay buffer
so that preferable trajectories can be reused for training. In
general, off-policy algorithms are less stable than on-policy
ones, so more hyperparameter tuning may be required.

Actor-critic using Kronecker-factored trust region (ACKTR)
[13] and advantage actor-critic (A2C) [14] are two other
examples of on-policy learning algorithms, and soft actor-critic
(SAC) [15] and deep deterministic policy gradients (DDPG)
[12] are additional off-policy algorithms that will appear later
in this paper.

Through the combined capability of reinforcement learning
and learning from demonstrations, robots will be able to

quickly acquire new skills and perform tasks in uncertain
environments. In this paper, we train RL algorithms for a hand
following and obstacle avoidance task. Our results show that
our choice of observation space and reward function improves
convergence times and increases performance by 27.3% when
compared to the method of Sangiovanni et al. [8] on the same
task. We demonstrate practical applications of this research
by integrating the virtual environments with a Vicon motion
capture system, which enables an operator to control a Kinova
robot using only the movements of their own body. This
coupling of human and robot action will enable our proposed
Internet of Skills, which enables robots to learn new skills
autonomously from observing expert demonstrations.

II. METHOD

A. Virtual Environments

OpenAI Gym [16] is an open-source toolkit for training RL
algorithms within virtual environments. We built the virtual
environments within this framework in order to provide a
familiar interface that can be reused when testing multiple RL
and LfD algorithms. OpenAI gym also supports the MuJoCo
physics engine, which we will use for its superior simulation
accuracy, including electro-mechanical responses of the robot
actuators. MuJoCo is capable of using the Unified Robot
Description Format (URDF) so that a multitude of robot
configurations can easily be loaded into the simulation.

For initial testing, we created two simulated robots to be
used in the Gym environments. The first robot is a 5 degree
of freedom (DOF) manipulator, shown in Figure 1a. This robot
is a modified version of the OpenAI Reacher environment and
is a simplified model of a human arm, with a 3 DOF ball joint
at the shoulder, and two single DOF hinge joints at the elbow
and wrist. The second robot is a 7 DOF Kinova Gen3 Robot,
shown in Figure 1b. Kinova supplies URDF models for their
robots, and these have been converted to the MuJoCo XML
format by the community [17].

Each environment features an obstacle (in blue), and a target
point (shown in green). The robot must learn to reach the target
point, while avoiding the obstacle. This is a non-trivial task,
since every goal location has infinitely many possible solutions
for the joint angles of the robot.

B. Reward Function

For our application, we build on the reward function pre-
sented in Sangiovanni et al. [8].

r = c1RT + c2RA + c3RO + c4RX .

Large distances from the end effector to the target point
are penalized with the RT term. Sangiovanni et al. propose a
Huber Loss function for this purpose.

RT = Lδ(d) = −

{
1
2d

2 for |d| < δ

δ(|d| − 1
2δ) otherwise

where d is the Euclidean distance between the target point and
the end effector and δ is the Huber Loss parameter, which
determines the regions of linear and quadratic loss.

GUZMAN et al.: ROBOTIC EMBODIMENT OF HUMAN-LIKE MOTOR SKILLS 3

RA penalizes large actions (a) to reduce overshoot and
encourage the manipulator to remain stationary after it has
reached the target point.

RA = −||a||2.

During training, we disable collisions in the MuJoCo envi-
ronment so that the manipulator can pass freely through the
obstacles. This is to ensure continuity of the action space
—with collisions enabled, a large action could result in zero
movement, which would cause an incorrect policy update. If
the manipulator passes through an obstacle, it receives a large
negative reward in the form of RO.

RO = −
(

dref

dO + dref

)p
where dO is the minimum distance from the manipulator to
the center of obstacle, and p sets the exponential decay rate.
dref is a constant that determines how close the manipulator
can get to the obstacle without incurring significant penalty.
This value is set to be approximately the size of the obstacle
or slightly larger.

Because collisions are disabled in MuJoCo, we also penalize
behavior which would be impossible on a physical robot. RX
discourages behavior where the manipulator passes through
itself to reach the target point by penalizing large joint angles.

RX =

N∑
n=0

min
(
0,
π

2
− θn

)
where N is the total number of hinge joints and θn is the
angle of each joint.

C. Observation & Action Spaces

The observation space defines what information the robot
agent can access to determine its policy. At each timestep, the
robot agent receives:

{ q, q̇, qT , qO, dT , dO }

where q and q̇ represent the robot’s joint angles and velocities,
qT is the location of the target, and qO is the location of
the obstacle. Joint angles are represented as cosine/sine pairs
in order to stabilize training and improve performance (i.e.
qi → (cos(qi), sin(qi)). For ball joints that use quaternions,
raw quaternion values are used. dT and dO are the distances
from the robot to the target and obstacle, respectively. These
last two values were added to improve convergence times,
as these are the actual values that we would like the agent
to optimize. Additional discussion and data that supports this
choice of observation space are provided in the results.

In the case of a ball-type joint, the observation space gains
an additional dimension, since ball joints are represented as 4
dimensional quaternions. This has the disadvantage of adding
additional dimensionality that can slow down training, but it
crucially avoids the problem of gimbal lock, which can cause
exploding gradients during training.

The action space is comparatively simple, and is equal to
the number of degrees of freedom of the robot. The network
is trained to output motor control commands, so all error
correction must be learned by the policy network.

Optimizing over this state space is a challenging task.
For the 5 DOF robot with a ball-type shoulder joint, the
observation space includes 20 continuous dimensions (6 joint
angles, 6 joint velocities, 3 target coordinates, 3 obstacle
coordinates, and 2 distances), and the action space includes 5
continuous dimensions. Since attempting to explore the entire
state space would be impossible, we must utilize state-of-
the-art reinforcement learning algorithms and techniques to
simplify this exploration problem.

D. Training
In order to train the agent to complete complex tasks, we

segment the training process into easier sub-tasks. In the first
task, we ask the agent to reach stationary goal points that
are near the obstacle. For high DOF robots, we can further
limit this first sub-task to the z = 0 plane, and include the
z dimension later. By placing this constraint, we decrease the
size of the observation space to explore, so training is quicker
and more likely to converge.

Next, through a process called experience copy, we load
in the policy we trained on the first sub-task, and begin the
training process on the next sub-task. The second sub-task
is to trace out a variety of arc patterns. Ideally, all points
that make-up the arc trajectory have been seen by the agent
during the training of the first sub-task. Training on the second
task makes minor improvements to the agent’s ability to track
moving objects.

All policy networks were trained using a machine running
Ubuntu 20.04 with an Intel(R) Core(TM) i7-4770K CPU @
3.90GHz, 16 GiB of memory, and a Nvidia GeForce RTX 3070
GPU. Initially, policy networks were trained to 10 million time
steps, but we noticed very little improvement after 5 million
steps. All figures and results are reported at 5 million time
steps. In order to minimize the effect of stochastic policy
training, networks were trained three times using different
seed values. The reported results are the average of the three
training instances.

For the implementations of PPO, ACKTR, and A2C, we
modified the implementation of [18]. For TD3 and DDPG,

Fig. 2: View of the motion tracking data and tracker placement.
The expert’s entire right arm and torso are tracked, although
only the hand position is used in this paper.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

(a) Comparison of RL algorithms on the stationary goal environment (b) Comparison of PPO and TD3 experience copy on the trajectory following
environment

Fig. 3: Results on two of the simulated virtual environments.

we used [1]. For SAC, we used [19]. All networks are
implemented using PyTorch.

E. Experimental setup

As described in the previous section, the first experiment
tasks the robot with reaching a random goal point, while also
avoiding an obstacle in the workspace. Since locations are
randomized, all simulation and evaluation occurs within the
MuJoCo virtual environment.

The next case we explore is teleoperation. In this exper-
iment, a human operator gives the agent a target trajectory
to follow, and the agent is tasked to decide the optimal way
of reaching that goal. Expert trajectories are recorded using a
Vicon motion tracking system and reflective markers, which
enable localization of the expert’s arm. In this paper, we only
use the position of the expert’s hand, and utilizing the full
arm tracking data is left to future work. An example image
of the tracker placement and motion tracking data is shown
in Figure 2. The dimensions of the motion tracking space
are aligned with the dimensions of the MuJoCo environment
by normalizing the maximum workspace coordinates of each
environment.

We ran the majority of experiments on the 5 DOF robot
from Figure 1a. We also implemented the PPO trajectory fol-
lowing policy on a physical Kinova Gen3 robot to demonstrate
the versatility of this approach. The Kinova robot requires 1
kHz control feedback in order to prevent jerky motion, so
low-level control must be handled by the embedded device
on-board the Kinova robot [20]. Our control interface sends
the robot joint velocities, which are proportional to the error
between the desired and current joint angles. The joint ve-
locity commands and joint feedback are communicated using
Kinova’s Robot Operating System (ROS) interface.

III. RESULTS

The results of six different RL algorithms on the stationary
goal environment are shown in Figure 3a. Here we can see

that TD3 and PPO were the top performing algorithms, with
SAC and DDPG tied for third. We observe that the off-policy
algorithms (TD3, SAC, and DDPG) converged very quickly,
then made incremental improvements for the remainder of
the training time. In contrast, the on-policy algorithms took
much longer to converge but they experienced a more stable
training process (i.e., the reward value nearly monotonically
increases). Since these values are averaged over three trials,
TD3 and DDPG appear to be more stable than their single
trials, where we often observed reward fluctuations up to an
order of magnitude in size.

In Figure 3b we compare the performance of PPO and TD3
when using experience copy. The copied policies are compared
against policies that are trained directly on the trajectory
following environment. In this test, the sample efficiency of
TD3 is particularly noticeable. Any advantage that is gained
by using experience copy is quickly negated by ”vanilla”
TD3’s fast convergence to near-optimal values. PPO, on the
other hand, showed a 26% performance gain when using
experience copy. The additional reward was enough to achieve
comparable performance to TD3 on the trajectory-following
task.

When deciding what algorithm to apply for future ex-
periments, we must consider more than just the asymptotic
reward value. The PPO implementation is parallelized over
8 environment instances, so PPO took 45 minutes to train,
whereas TD3 was single-threaded and took over 30 hours
to train for the same number of time steps. However, one
advantage of TD3 is its sample efficiency, and as shown
in Figure 3a, it reaches its maximum reward at around two
million time steps. The corresponding training training time is
7.5 hours, which is still much longer than it takes for PPO to
converge.

Additionally, when viewing the control policies in simu-
lation, we noticed that TD3 produced irregular trajectories,
whereas PPO tended to follow smooth arcs. This is quantified
in Figure 4, where we compare the distances to the target of
the two policies. Although TD3 accrues a better reward, PPO

GUZMAN et al.: ROBOTIC EMBODIMENT OF HUMAN-LIKE MOTOR SKILLS 5

Fig. 4: Distances between the robot fingertip and the target
for both the PPO and TD3 policy networks. PPO is found to
be much more stable, despite having a lower average reward
than TD3.

(a) Reward comparison of the additional distance information

(b) Reward comparison of the sinusoidal joint angles

Fig. 5: Comparison showing performance increase of two of
the proposed modifications to the observation space.

shows preferable behavior by holding the fingertip stationary
at the target point. This gives major preference to choosing
PPO for manipulator control tasks due to its comparably safe
and predicable trajectories.

Fig. 6: Demonstration of the PPO hand following policy on
a Kinova Gen3 Robot. Hand location of the expert (top) is
replicated on the Kinova robot (bottom).

In Figure 5, we provide some experiments that demonstrate
the performance gains of the method described in Section II-C.
Figure 5a considers the inclusion of the additional distance
information (dT and dO) in the observation space. Including
this additional information showed a 20.6% increase in the
asymptotic reward. Similarly, Figure 5b shows that applying
the sinusoidal transformation to the raw joint angles improved
performance by 27.3%. These improvements to the method of
Sangiovanni et al. [8] can be applied to future LfD tasks to
improve stability and performance.

An initial test of our sim-to-real pipeline is shown in Figure
6. The robot correctly follows the location of the expert’s
hand while avoiding obstacles in the workspace. In the current
prototype, no external sensors were added to the robot, so
we hard-coded the obstacle locations using the state space
presented in section II-C. Our results demonstrate a successful
transfer of the trajectory following policy, enabling the human
operator to control the Kinova robot using only the movements
of their own body.

In the appendix, Figure 7 shows a comparison of various
values of the environment hyperparameters. Since changing
these values affects the calculated reward of a given policy, we
chose to evaluate them on average distances to the obstacle and
the target. A small target distance and large obstacle distance
are desired. We note that c1 and c3 had the smallest impact
on performance simply because the magnitude of RT and RO
is smaller than the other values. After training the control
policy using the optimal hyperparameters, we observed more
robust obstacle avoidance, where the average obstacle distance
rose from 4.97 cm to 11.83 cm. The target distance was not
significantly affected, rising from 7.18 cm to 8.54 cm, which
is within the margin of error we recorded for multiple trials.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

Robot Policy Mean Error (cm)
Kinova 15.2
5DOF 11.2

TABLE I: Comparison of target point error between different
robots

As shown in Table I, both the 5 DOF and 7 DOF Kinova
robots were able to successfully reach the goal points within
13 cm average error. The 5DOF robot performed better than
the Kinova robot, likely because the shoulder ball joint offers
far more flexibility than the three real shoulder actuators on the
Kinova robot. The values in Table I include cases where the
goal point is inside of the obstacle, where I observed the robot
to correctly avoid the obstacle while maintaining the closest
possible distance to the goal point. This is an important feature
of this system, since it demonstrates robust obstacle avoidance,
even if the human operator is unaware of an obstacle and
instructs the robot to collide with it. These results demonstrate
a successful method for using real-world trajectories to operate
a robot using reinforcement learning-based control policies, a
necessary prerequisite for using demonstrations to train robots
to complete more complex tasks.

IV. CONCLUSION

In this work, we created virtual environments that will
enable the Internet of Skills framework, and we tested how
state of the art reinforcement learning methods perform in the
absence of expert demonstrations. We introduce an observation
space that improves performance on inverse kinematics and
obstacle avoidance tasks and provide comparisons of mul-
tiple RL algorithms. Although PPO achieved only second-
best reward values, we recommend using it over other RL
algorithms due to its predicable and stable trajectories and its
fast training times. Additionally, through the use of experience
copy, PPO can achieve comparable performance to state of the
art methods like TD3. This work provides foundational insight
and explores the methods necessary for developing an Internet
of Skills that will enable robots to learn complex tasks from
human demonstrations.

V. FUTURE WORK

Future goals for this project are to utilize the expert’s
full joint angle data from the motion tracking system, rather
than just the position of the expert’s hand. Doing so would
allow the expert and robot to share the same observation and
action space, enabling the use of learning from demonstration
algorithms such as Generative Adversarial Imitation Learning
(GAIL). Utilizing LfD can speed up training times and allow
the robot agent to complete more difficult tasks.

We would also like to extensively test the sim-to-real
prototype on a variety of manipulation tasks. This data will
be important to further demonstrate the feasibility of such a
system, and it can be compared to a future control method
which follows all joint angles of the expert.

Lastly, we propose the use of recurrent neural networks
(RNNs) to form a mapping from human to robot joint angles.
Robots that have significantly different actuator layout than a

human arm will not be able to directly interpret the actions that
the human experts take in the environment. This constraint led
us to choosing the Kinova 7DOF robot for our initial testing,
since the human-robot mapping is nearly identity. Learning a
joint angle mapping with RNNs would allow for any robot
phenotype to learn from human demonstrations, even if the
number of actuators or physical layout varied greatly from a
human’s.

APPENDIX A - HYPERPARAMETERS

Parameter Optimal Value Estimated Value*
c1 1500 1000
c2 10 10
c3 200 60
c4 0.01 0.01
δ 0.005 0.01
p 6 8
dref 0.03 0.03

TABLE II: Environment Hyperparameters.
*Estimated values were used for generating Figures 3-5.

Parameter Value
Learning rate 3 ∗ 10−4

Entropy coefficient 0.01
Value loss coefficient 0.5
Epochs per update 10
Num mini batch 1
Discount Factor (γ) 0.99
GAE Discount Factor (γGAE) 0.95
Clip 0.2

TABLE III: PPO Hyperparameters

Parameter Value
Start Timesteps 25 ∗ 103
Evaluation Frequency 5 ∗ 103
Noise STD 0.1
Batch Size 256
Discount Factor (γ) 0.99
Tau τ 0.005
Policy Frequency 2

TABLE IV: TD3 Hyperparameters

ACKNOWLEDGMENT

The authors would like to thank all the members of the
Center for Distributed Robotics Laboratory for their help.
This material is based upon work partially supported by the
Minnesota Robotics Institute (MnRI), Honeywell, and the Na-
tional Science Foundation through grants CNS-1439728, CNS-
1531330, and CNS-1939033. USDA/NIFA has also supported
this work through the grant 2020-67021-30755.

GUZMAN et al.: ROBOTIC EMBODIMENT OF HUMAN-LIKE MOTOR SKILLS 7

Fig. 7: Performance comparison of various hyperparameter choices for the 5 DOF robot reaching stationary goals. Optimal
values are marked with the black dashed line and are given in Table IV. c4 and dref are chosen empirically since there is no
quantifiable selection method. The same hyperparameters were used for the trajectory following task.

REFERENCES

[1] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018. [Online]. Available:
http://arxiv.org/abs/1802.09477

[2] T. L. Paine, C. Gulcehre, B. Shahriari, M. Denil, M. Hoffman, H. Soyer,
R. Tanburn, S. Kapturowski, N. Rabinowitz, D. Williams, G. Barth-
Maron, Z. Wang, N. de Freitas, and W. Team, “Making efficient use of
demonstrations to solve hard exploration problems,” 2019.

[3] S. Hirche and M. Buss, “Human-oriented control for haptic teleopera-
tion,” Proceedings of the IEEE, vol. 100, no. 3, pp. 623–647, 2012.

[4] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and N. R.
Waytowich, “Integrating behavior cloning and reinforcement learning
for improved performance in dense and sparse reward environments,”
2020.

[5] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, G. Dulac-Arnold, I. Osband,
J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep q-learning from
demonstrations,” 2017.

[6] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and
P. Abbeel, “Overcoming exploration in reinforcement learning with
demonstrations,” CoRR, vol. abs/1709.10089, 2017. [Online]. Available:
http://arxiv.org/abs/1709.10089

[7] B. Kang, Z. Jie, and J. Feng, “Policy optimization with demonstrations,”
in Proceedings of the 35th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 2469–2478.
[Online]. Available: https://proceedings.mlr.press/v80/kang18a.html

[8] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and
M. Piastra, “Deep reinforcement learning for collision avoidance of
robotic manipulators,” in 2018 European Control Conference (ECC),
2018, pp. 2063–2068.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[10] A. A. Shahid, L. Roveda, D. Piga, and F. Braghin, “Learning continuous
control actions for robotic grasping with reinforcement learning,” in
2020 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2020, pp. 4066–4072.

[11] L. C. Melo, D. C. Melo, and M. R. Maximo, “Learning humanoid
robot running motions with symmetry incentive through proximal policy

optimization,” Journal of Intelligent & Robotic Systems, vol. 102, no. 3,
pp. 1–15, 2021.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 2015.

[13] Y. Wu, E. Mansimov, S. Liao, R. B. Grosse, and J. Ba, “Scalable
trust-region method for deep reinforcement learning using kronecker-
factored approximation,” CoRR, vol. abs/1708.05144, 2017. [Online].
Available: http://arxiv.org/abs/1708.05144

[14] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online]. Available:
http://arxiv.org/abs/1801.01290

[16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[17] V. Zhang, “Gen3 mujoco,” https://github.com/vincentzhang/gen3-
mujoco, 2019.

[18] I. Kostrikov, “Pytorch implementations of reinforcement learning algo-
rithms,” https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

[19] R. Yang, “torchrl,” https://github.com/RchalYang/torchrl, 2021.
[20] KinovaRobotics, “ros kortex,” https://github.com/Kinovarobotics/

ros kortex, 2021.

