
Tumbling Robot Control Using Reinforcement Learning

Andrew Schwartzwald, Matthew Tlachac, Luis Guzman, Athanasios Bacharis and Nikolaos Papanikolopoulos
{ schw1818 | tlach007 | guzma102 | bacha035 | papan001 }@umn.edu

Department of Computer Science and Engineering, University of Minnesota

Abstract— Tumbling robots are simple platforms that are
able to traverse large obstacles relative to their size, at the cost
of being difficult to control. Existing control methods apply only
a subset of possible robot motions and make the assumption of
flat terrain. Reinforcement learning allows for the development
of sophisticated control schemes that can adapt to diverse
environments. By utilizing domain randomization while training
in simulation, a robust control policy can be learned which
transfers well to the real world. In this paper, we implement
autonomous setpoint navigation on a tumbling robot prototype
and evaluate it on flat, uneven, and valley-hill terrain. Our
results demonstrate that reinforcement learning-based control
policies can generalize well to challenging environments that
were not encountered during training. The flexibility of our
system demonstrates the viability of nontraditional robots for
navigational tasks.

I. INTRODUCTION

In recent years, many distinct tumbling robot platforms
have been designed. This class of robots uses gravity to assist
their movement by rolling their body through a given terrain.
These type of robots can be effective in applications where
a high mobility-to-size ratio is required [1]. It is often the
case that real world environments include complex terrains
composed of varying surfaces, rapid changes in elevation,
and impassable obstacles. Tumbling locomotion can allow
robots to traverse these complex environments in which
traditional locomotion fails. However, this comes with the
cost of being difficult to control. For example, interactions
with the terrain can be used to efficiently maneuver down a
hill, but they can also cause the robot to roll in unanticipated
directions. All these characteristics make tumbling robots an
attractive option for mobile robot applications, and they open
an interesting area of control research where a robot’s motion
cannot be modeled or predicted.

Tumbling motion is defined as being stochastic—for a
given motor command, we are not able to predict the motion
of the robot until after it has executed a tumble. Even
seemingly simple maneuvers such as driving forward require
constant adjustment as variations in surface friction and
terrain height can easily perturb the robot significantly from
its desired path. As a result, tumbling robots often need to
segment their movement into discrete tumbles [2], where
they can analyze the result of their previous action and
correct for any disturbances that caused them to deviate from
their goal. This represents a challenging control problem, as
there is no direct mapping from the disturbance to a motor
command that can correct for it. Tumbling robots require a
much more sophisticated control policy that has only become
feasible in recent years due to advancements in reinforcement

Fig. 1: One of our tumbling robot prototypes navigating to a setpoint (collage of
several frames from a physical trial).

learning (RL).
Our previous work in [2] takes the first steps of exploring

the importance of RL for tumbling locomotion. It proposes
the use of RL methods for tumbling robot control, due
to controller complexity and environmental uncertainty. In
this work, we examine how well RL policies perform in
comparison with a simple controller and a random policy.
Also, we test the RL policies in different environments
than they were trained in, and measure their performance.
We focus on the task of setpoint navigation, and evaluate
trained policies on three different environments: flat ground,
an uneven surface, and a valley-hill terrain (shown in Figure
2). The testing of the policies takes place in simulated and
real-world environments, demonstrating promising results for
deploying tumbling robots outside of the lab.

II. RELATED WORK

A. Control of Tumbling Robots

The benefits of tumbling locomotion include terrain-body
interactions that allow tumbling robots to successfully nav-
igate many terrains with few actuated degrees of freedom
[3]. As discussed in [2], [3], tumbling locomotion has several
advantages over other methods, such as simple hardware and
increased mobility relative to size. These characteristics have
led to tumbling robots being designed for applications that
require small and light robots such as underwater sampling
[4] and jumping over obstacles [5]. More importantly for our
application, tumbling locomotion has proven to be a difficult
control problem that we can use to test the capabilities of
reinforcement learning-based control policies.

Developing a control policy for tumbling robots can be a
notoriously complex task, especially in diverse environments.
Usually, these methods utilize feedback from the robot’s

motors and make assumptions about the environment’s char-
acteristics such as specific surface friction and zero elevation
gain. Previous work has focused on motion primitives for
locomotion on a flat surface [1], while there have also been
discussions for climbing step locomotion in [3] and [6],
though neither of those have demonstrated a control policy
for tumbling locomotion. The movement of these robots is
highly dependent on environmental conditions, with varying
friction, terrain slope, and an uneven surface limiting its
performance. An adaptable and robust control policy that
can leverage complex maneuvers and handle diverse terrain
would greatly expand the capabilities of tumbling robots.

Reinforcement learning has proven to be a successful
control technique when we lack a full model of a robot’s
locomotion; furthermore, the use of deep reinforcement
learning to train a model in simulation and then transfer it
to real-life control has been demonstrated in many different
contexts [7]–[10]. The real-world environment can never be
perfectly replicated in simulation, so simulation parameters
such as friction, gravity, and motor responses are varied
through a process called domain randomization. This results
in a network more capable of generalizing to different
environments, thereby making it more robust to transfer from
simulation to the real world [9]. With sufficient domain
randomization, the real world is a subset of the simulated
environments used for training. A prominent example where
this methodology achieved success is [7] where a large set
of randomized environments were used in simulation to real
(sim-to-real) transfer.

Similarly, Maekawa et al. attached irregularly shaped
branches to servos and implemented a sim-to-real locomotion
controller [10]. This demonstrates the use of reinforcement
learning in developing control policies for nontraditional
robot designs. However, in that work, tumbling motions
were avoided as the robot was tethered. Tan et al. similarly
developed a locomotion policy for a quadruped [8]. Tumbling
robot motions were generated in [11], but are only tested
with a simple robot in simulation and are only applied to
movement in a 2D plane. The first time that RL was used
to control a physical tumbling robot was in [2], and in this
paper we explore how well RL control policies generalize to
new and complex real world environments.

B. RL Method & Robot Design

Proximal Policy Optimization (PPO) [12] is an on-policy
RL algorithm that belongs to the family of policy gradient
methods [13]. In [12], PPO establishes its importance over
other methods, such as Actor Critic approaches [14], due
to the algorithmic simplicity and better convergence rates.
Many recent works have demonstrated success using this
method for robot control applications, including the control
of a humanoid robot [15]. Although methods like soft-actor-
critic can offer a better sample efficiency, the improved
stability of on-policy algorithms, along with the relatively
inexpensive sampling process of training within a simulated
environment, makes PPO a more attractive method.

(a) Uneven surface constructed with randomly placed foam tiles. Each
tile is 1 ft x 1 ft x 0.25 in.

(b) Valley-hill terrain constructed with foam tiles. Maximum terrain
height is 10 inches. Each tile is 0.5 ft x 0.5 ft x 0.5 in. A tarp (not
pictured) was laid over the terrain during physical trials to prevent the
tumblebot’s legs from getting stuck in gaps between the tiles.

Fig. 2: The two different terrains used for the real world experiments.

Usually, the policy network of PPO is a fully connected
neural network, but recurrent neural network policies can
also be used in RL algorithms to improve robustness when
using noisy data [16]. Recurrent neural networks allow the
policy to observe its past actions, which can lead to more
sophisticated behavior such as attempting a different action
if the first was unsuccessful. [7] applied this concept for
the task of manipulating cubes with a robotic hand. In the
aforementioned application, PPO was successfully used to
optimize a recurrent neural network; in particular, long short-
term memory (LSTM) [17] was used. For our application,
we chose a LSTM policy due to its robustness to noise
[7], [16], and we trained the policy with PPO due to its
fast convergence and effectiveness in continuous state spaces
[12].

We designed a new tumbling robot to serve as a testing
platform. Like the one in [2] this was inspired by the
Adelopod [18], and it uses two single degrees of freedom legs
attached to continuous rotation servos. Similarly, no servo
position feedback was utilized, and encoders were not added
to provide it. The new robot features higher body friction,
which improves its ability to overcome uneven terrain and
obstacles. ROS (Robot Operating System) was used onboard

(a) Tumbling robot model in Pybullet simulation.

(b) Tumbling robot prototype.

Fig. 3: The two robots used in simulation and real world experiments.

to allow modular configuration.
After training the policies to convergence in simulation,

we evaluated their performance in various real-world envi-
ronments, as well as in simulation. Our results demonstrate
a successful sim-to-real pipeline for tumbling locomotion,
and a robust control policy able to adapt to different terrain
environments.

III. APPROACH

A. Robotic Platform

1) Hardware: First, we constructed a simple and low cost
tumbling robot platform. An image of the prototype is shown
in Subfigure 3b, and its simulation version in Subfigure 3a.
In [3], low leg friction with high body friction was found to
increase performance in step climbing. Accordingly, the legs
were cut from low-friction Delrin plastic and the exterior
aluminum standoffs were coated in rubber to increase body
friction. Two Power HD continuous rotation servos were
used for actuation. These servos are inexpensive yet provide
sufficient torque and velocity at a low mass. An inertial
measurement unit (IMU) was included, however, its data was
not used. Rather, we used a Vicon motion capture system
to obtain the pose and ensure accurate position feedback
to the robot. Since the purpose of the IMU is to enable
tumbling locomotion outside of the laboratory setting, use
of filtered IMU data instead is left to future work. Hardware
connections are shown in Figure 5 of [2].

This platform differs from existing tumbling robots in
its simple blocky design which allows for more robot pa-
rameters to be easily modified in simulation. Randomized

Unified Robot Description Format (URDF) models can be
generated programmatically, increasing the scope of possible
domain randomization. We generate a new robot each time
one is spawned in simulation during training by randomizing
37 total parameters. Each generated tumble bot has vary-
ing dimensions, inertia characteristics, motor responses, and
friction coefficients. Every parameter is randomized with a
standard deviation of 5% of the nominal values. This amount
of domain randomization is necessary to ensure that the
trained policy is robust to small errors in these parameters.
Since the real tumble bot is within the subset of these
generated robots, the policy is expected to transfer well to
the real world.

2) Software: For the physical prototype, the main onboard
computer is a Raspberry Pi 3 Model B+, running Ubuntu
16.04 with ROS Kinetic. It is configured as an access
point, executing motor commands produced by the trained
network running on a separate computer and receiving a
stream of Vicon motion capture data. The tumble bot uses an
Arduino Uno as a motor controller between the Pi and the
servos to allow for future expansion and control of different
servos. We chose the Raspberry Pi for its compatibility with
baselines models. For future work, all computation would
be performed by the Raspberry Pi, with the only external
communication being setpoint commands.

The flow of data is shown in Figure 6 of [2]. We
configured the training environment using OpenAI Gym.
For each episode step, the servo outputs are sent from
Gym using a TCP socket. The robot returns a position
and orientation observation using the most recently received
mocap data. A timer is used to ensure that communication
is performed no faster than the rate it was modeled as in
simulation. By choosing a relatively slow rate of 1 Hz effects
of communication latency are minimized. We designed the
system for a latency of about 20 ms, allowing theoretical
rates of about 50 Hz.

The system can easily switch between manual and au-
tonomous control, with a safety override to stop movement.
This was accomplished through the use of ROS. ROS is
a communication framework that allows different robots to
use the same software packages and makes it easy for these
packages to interact with each other. This package and node
system enables a modular software approach. The tumbling
robot’s servo outputs are controlled via commands from the
Gym environment though the Gym link node, when they are
not being manually controlled with a joystick through the
joystick node. While IMU data was not used, the mocap node
could be swapped for the IMU node. This would shorten the
time required to move the lab experiments to an outdoor
environment.

B. Policy Training

Training a policy in simulation rather than the real world
decreases training time [9], as long as the reality gap between
the simulated and real environments is not too large.

1) Simulation Environment: Simulation was performed
using PyBullet, a Python interface to the Bullet physics

Parameter Value
learning rate 3e-4
episode length 20 steps
batch size 128 steps
discount (γ) 0.99
clipping parameter 0.2
optimizer Adam

TABLE I: PPO2 hyperparameters used in training.

engine. The simulation’s numerical solver’s rate was left
at the default of 240 Hz. Between every action output,
the simulation was stepped 240 times. This results in an
action frequency of 1 Hz. While a much higher frequency
is possible, it is not required for effective locomotion. Each
PPO episode was limited to 20 steps, which corresponds to
episodes of 20 seconds and 4,800 simulation steps.

The simulator was sensitive to changes in the solver’s
rate, due to the many collisions involved in the simulation
of tumbling motion. With too low of a rate, simulated
joint control was inconsistent at low velocities. The rate,
number of simulation steps per episode step, and number
of steps per episode were empirically chosen to result in
fast training times, a policy that converges, and consistent
simulator behavior.

Measurements of the physical prototype were translated
into simulation through URDF models, similar to the process
described in [9]. We segmented the structure of the robot into
three parts: the body and two legs. For modeling inertial char-
acteristics, calculations were done assuming uniform density,
using the measured mass and dimensions. A high friction
coefficient, 0.9 for lateral friction, was chosen empirically
to minimize behavior such as sliding that would be unlikely
to transfer well [10]. As described in Section III-A.1, these
values were used as the means for randomized generated
URDF models. This randomization affects the dynamics of
the tumbling robot’s movement.

The tumbling bot’s servo controllers do not provide a
consistent torque. At near-zero velocities, torque is signifi-
cantly reduced. This behavior is approximated in simulation
by setting the motor’s force to 0.1 N with Gaussian noise,
where standard deviation is 0.1 N. At higher velocities, servo
torque is set to 10 N. Servo velocity was also randomized,
with a standard deviation of 0.8 rad/s. This randomization
is significant relative to the commanded velocities, but was
essential to having a robust policy.

2) Reinforcement Learning: We used the Stable Baselines
implementation of PPO with an MLP LSTM policy. We
set the learning rate to 3e-4, the same as was used in
[7]. Nminibatches was set to 1. For the hyperparameter
selection, we used the same ones proposed in [12], due to
high performance in their testing/evaluation. A selection of
values are shown in Table I.

Table II, shows initial results that support our choice of a
recurrent policy. Both policies performed similarly, although
the LSTM achieved slightly higher rewards at times. We also
tested different RL algorithms, including Advantage Actor
Critic (A2C) [19] and Trust Region Policy Optimization
(TRPO) [20]. These are the only other algorithms within
Stable Baselines that are compatible with the MultiDiscrete

Algorithm Reward
PPO-LSTM 9.342
PPO-MLP 7.758
A2C 9.333
TRPO 8.089

TABLE II: Asymptotic Reward of Different Reinforcement Learning Methods

action space, so testing other algorithms would require mod-
ifying the tumble bot action space. In Table II, we see that
A2C achieved a large asymptotic reward, which is similar
to PPO-LSTM. On the other hand, TRPO did not perform
that well, followed by PPO-MLP. Each algorithm was able
to train a successful policy, which is expected due to the
small action space, but the higher reward values indicate a
policy that can more quickly and accurately reach the target.
Since each RL algorithm we tested performed equally well
or worse than PPO-LSTM, we chose to apply this method
for our task; in general, it is also the most stable and likely
to converge [12].

PPO allows discrete or continuous action and observation
spaces. A discrete action space was used, with three possible
outputs for each of the two legs. These outputs are velocities
of -5.25 rad/s, 0 rad/s and 5.25 rad/s. This small action space
allows for a simple approximation of the real world servos
in simulation. Additionally, limiting the number of actions
greatly limits the dimensionality of the policy optimization.
Adding the full range of servo velocities would exponentially
increase the amount of exploration needed during training
and would not add significant physical capability to the robot
agent.

The observation space is continuous and includes the
position of the center of mass, orientation of the robot torso,
and the intended output velocities. Center of mass velocity
is included in reward calculation, but not in the observation.
This way, after transfer, the learned policy can still be loaded,
and velocity data does not need to be estimated online.
Decreasing the dimension of the observation space was found
to improve transfer success in [8].

Adding noise to the output velocities, as described in Sec-
tion III-B.1, prevents the policy from easily approximating
servo position. The velocity and torque changes applied are
not directly made visible to the policy. However, it is possible
for leg positions to be inferred through body orientation
along with previous servo commands. By creating a network
that is resistant to unpredictable servos, we predict that
unmodeled phenomena are covered by these randomizations.
For example, no battery model is used, but on the real robot,
battery state affects servo speed. This would increase the
likelihood of successful transfer without requiring extensive
domain randomization.

To demonstrate navigation to a setpoint, the setpoint
was fixed to the origin while starting location was varied.
Navigation to other setpoints could be achieved by shifting
the coordinate system. At the start of each episode, the
robot’s location was reset to a uniformly random position
along a half circle of radius 1.5 m.

The reward function used is the same as [2], and is given
by:

(a) Trained on flat ground. (b) Trained on uneven surface.

Fig. 4: Plots of episode reward during training. Data has been downsampled to 1000 samples, and filtered with a window size of 50.

R(st) =
1

1+
√

v2
x + v2

y

−
√

p2
x + p2

y

where vx and vy are the x and y components of velocity,
and px and py are the x and y components of position. The
velocity component discourages circling the setpoint, and
encourages lower energy consumption.

One challenge with tumbling robots is that there is not
a clear failure state - other systems, such as a quadruped
robot [8], may terminate an episode when the simulated
robot falls. We chose to treat travel past 3 m away from the
goal as a failure state for the tumbling robot. In simulation,
this causes a reset. For real-world transfer, this failure state
was unchecked, since the network had learned to avoid the
boundary post-training.

3) Training Results: Training was performed on a Linux
machine with an Intel(R) Core(TM) i7-6700K CPU @
4.00GHz and 32 GiB of memory. We note that training on a
GPU had negligible performance gains due to the complexity
of the physics simulation, so all training was CPU-based.
One network was trained on flat ground, while the other
trained on a randomly generated surface that mimics the
foam tiles shown in Figure 2a; their episode rewards during
training are plotted in Figure 4.

We compare our training results against a random policy
and a simple control approach. This controller treats the
tumble bot as a differential drive wheeled robot, which is
the control method that most closely matches the locomotion
of the tumble bot. In more detail, given the relative angle
to the goal, the robot sends motor commands to account
for errors in its trajectory. Although wheeled robots can
use a proportional controller, the tumble bot hardware and
simulation environment only support discrete actions, so we
chose an angle threshold where the robot would update its
movement to either drive straight, left, or right. As expected,
this simple control approach does not transfer well to the

tumble bot due to the unpredictability of tumbling motion,
so this serves as an important baseline for our RL approach
to beat.

Due to the increased number of collisions being calculated
by the physics engine, the uneven network took significantly
longer to train than the flat network. As a result, the flat
network trained for 10.86 times as many time steps, despite
additional training time being allotted to the uneven network.
Any potential robustness increase from training the network
on terrain comes with a tradeoff in required training time or
resources.

C. Evaluation Environments
We evaluated each policy on three different environments:

flat ground, the randomized surface pictured in Figure 2a,
and the valley-hill terrain in Figure 2b. The valley-hill terrain
was generated using perlin noise, with a maximum height
of 25.4 cm (10 inches). We set this height value to be
the maximum value which the tumble bot could physically
overcome. Preliminary testing on both the physical and
simulated tumble bot (shown in Figure 5) showed that steps
greater than 5cm are difficult for the tumble bot to overcome
due to its body dimensions. We chose the 25.4 cm terrain
height since it had no single step size greater than 5cm. We
utilized two octaves of perlin noise to produce a terrain that
features a low-frequency slope and relatively high-frequency
valleys and hills. The terrain is then quantized so that it
can be represented using collision boxes. This representa-
tion simplifies the terrain construction both in simulation
and for the laboratory trials. An example of the simulated
terrain environment is shown in Figure 6. We generated a
similar environment for the uneven surface, using uniformly
random numbers to specify the terrain height within a given
maximum value.

IV. EXPERIMENTAL RESULTS

After training the policies in simulation as described
in Section III-B, we evaluated their performance both in

Flat Sim Flat Real Uneven Sim Uneven Real Valley-Hill Sim Valley-Hill Real
Policy Setpoint Error Setpoint Error Setpoint Error Setpoint Error Setpoint Error Setpoint Error

µ σ µ σ µ σ µ σ µ σ µ σ

Flat 0.104 0.064 0.250 0.158 0.183 0.173 0.269 0.206 0.620 0.314 0.554 0.339
Uneven 0.219 0.164 0.433 0.407 0.312 0.307 0.335 0.243 0.685 0.420 0.557 0.307
Simple Controller 1.081 0.890 - - 1.166 0.879 - - 1.123 0.770 - -
Random Policy 1.395 0.642 - - 1.374 0.602 - - 1.367 0.758 - -

TABLE III: Setpoint accuracy for simulated and real-world trials. Networks trained on flat ground and uneven surfaces were evaluated in three environments. All values are in
meters.

Fig. 5: The maximum reward for various height values on a random terrain. Reward
plateaus at 5cm, indicating this is the maximum step size that the robot can overcome.

Fig. 6: The simulated valley-hill terrain, generated from perlin noise.

simulation and in the real world. In simulation, 100 trials
were performed per network. The robot starting location was
randomized, and all domain randomization parameters were
set to the corresponding measurements of the physical robot
and testing environment. Results are reported in Table III.

100 trials were also performed per network in the real
world environments. The tile floor was significantly more
slippery than the foam used to construct the terrain. As
pictured in Figure 7, physical trials were started from one
of five locations, spaced 30◦ apart around a semicircle of
radius 1.5 meters. Note how the initial robot orientation
remains fixed as the starting position is moved around the
semicircle, resulting in a variety of angles from which the
robot must approach the origin. Raw pose data from the
VICON system for a tumbling platform results in messy-
looking trajectories, so smoothed trajectories are plotted
instead. Smoothed trajectories are generated using B-splines
from the scipy package with the smoothing parameter
set to 0.2. An example of raw vs. smoothed trajectories

Fig. 7: Raw data and a smoothed trajectory for one physical trial. Each trial begins at
one of the five indicated positions around the semicircle. All distances are in meters.

is also compared in Figure 7. The smoothed trajectories
for every physical trial are plotted in Figures 8 and 9,
separated by policy and evaluation environment (flat ground,
uneven surface, or valley-hill terrain). Setpoint errors are
again reported in Table III.

Table III shows that the network trained on flat ground
performed better than the network trained on terrain in
every trial, real-world and simulation alike. This is an
interesting outcome because a policy trained on a more
complex environment would be expected to be more robust.
However, including the terrain during training also results in
training from noisy data, since the robot’s trajectories are less
predictable. This suggests that any robustness gained from
a more challenging environment is offset by a less stable
training process.

Performance was better on flat ground than the uneven
surface except for the real-world evaluation of the network
trained on terrain. This may be explained by the difference in
friction between the flat tile floor and the foam terrain—the
slicker floor resulted in the robot sliding more, which makes
the results of tumbles harder to predict, and the terrain
network may have been less robust to friction changes due
to the fewer number of training iterations. The flat network,
in contrast, had more time to adjust to different coefficients
of friction, but had never seen uneven terrain before the
evaluation stage. On average, the setpoint errors in the real-
world trials were only 1.13 times those in the corresponding
simulated trials, which demonstrates a robust system that can
transfer to real life remarkably well.

We also note that in the valley-hill terrain, both networks
performed better in real life than in simulation. We attribute
this to the real robot’s rubber stand-offs, which were not
modeled in simulation and resulted in a better step-climbing

ability. This analysis agrees with [3], which identified ideal
contact as a necessity for efficient step-climbing. Addition-
ally, the simulated setpoint error was calculated on various
terrain generated from perlin noise, which may have been
more challenging than the single terrain instance we con-
structed for the real-world tests. Both policies had similar
setpoint error in the physical trials, which suggests that
physical limitations of the tumblebot (such as step-climbing
ability) may have a greater role in maneuvering terrain than
more robust policies.

Some additional insights can be derived from the plots
in Figures 8 and 9. It appears as though the beginnings of
trajectories for the uneven network are significantly more
consistent than those of the flat network trajectories. Despite
this difference, the flat network performed much better
on average. One interpretation is that the uneven network
learned a policy that is more robust to noisy data, despite
converging to a sub-optimal setpoint error. For evidence
of this, consider the trials starting from the leftmost initial
position. In Subfigure 8b, many trajectories follow the same
general strategy - initially heading towards the origin, passing
above it, and trying to recover with a large circle. Subfigure
8a, in contrast, shows a policy with significantly more varied
and effective strategies for recovering from missing the
origin.

Setpoint error aside, comparing the network performance
when evaluated on the uneven surface implies that the
uneven network was more robust in its presence. The flat
network has significantly messier paths, but a better strategy
for recovering from unexpected setbacks. The comparative
consistency of the terrain network shows promise, and it may
well be worth using in situations where path consistency is
more important than setpoint error.

The results in Figures 9a and 9b follow more unpredictable
paths since the terrain height has a much greater effect on
the tumblebot’s motion. By comparing the overlay of terrain
heights, we note how the tumblebot tends to follow the
terrain slope, often falling into the darker regions of the
plot (valleys) and avoiding the lighter regions (hills). We
observe that the flat network visited a larger area of the
terrain and tended to climb straight over hills. In contrast,
the uneven network avoided hills by traversing around them
when possible. This behavior can be attributed to the un-
even network encountering impassable areas during training,
which the tumblebot must learn to avoid using the LSTM
policy. Essentially, if the uneven network detects that the
robot is blocked, its next action will be to turn another
direction instead of continuing forwards.

During flat and uneven surface trials, the policies rarely
leveraged simple strategies like turning in place and then
driving forwards. Instead, trajectories are often sets of arcs,
created by one leg flipping the robot forward, and the other
colliding with the ground and turning it. The specifics of the
leg positions, and whether the leg responsible for turning the
robot is also moving, result in different degrees of turning
and forward motion. These complex maneuvers allow for a
fine degree of robot control, and are more sophisticated than

typical motion primitives as explored in [1] or anything a
human driver would be likely to achieve.

The results on the valley-hill terrain show a great adapt-
ability of the policies trained in simulation. Not only can they
transfer to a real robot and successfully navigate to a setpoint,
but they can do so in an environment that is much more
challenging than anything they experienced during training.
Although the tumblebot can occasionally get stuck in a
valley, we attribute this to physical limitations of the robot,
since both policies had similar success in this scenario. Our
results demonstrate that the policies are able to successfully
recover from the unpredictable trajectories of the valley-hill
terrain, which is the first time tumbling robots have been
able to maneuver non-flat terrain.

V. CONCLUSION

This work demonstrates successful real world transfer
of a control policy to a tumbling robot and shows that
learned policies can generalize well to unknown terrain. It
was accomplished with no training on real world data and
only a crude simulation model. We achieved a successful
sim-to-real control policy pipeline using domain randomiza-
tion, avoiding the use of complex traditional robot control
schemes. Our results demonstrate that reinforcement learning
can provide an adaptive and robust policy for controlling un-
predictable locomotion in complex environments. This work
is the first step towards developing a tumbling robot control
policy that is capable of navigating unknown environments
autonomously.

VI. FUTURE WORK

Future work for outside of lab deployment includes mov-
ing the rest of the computation to the onboard computer and
using IMU data in place of mocap data. Adding environmen-
tal sensors to the prototype or using the policy to control an
already outfitted robot such as the Aquapod [4] would enable
the robot to perform useful work.

While in this work only a small amount of domain
parameters needed randomization for transfer to a laboratory
environment, robustness could be improved through a larger
scope of domain randomization.

A limitation of the present work is that a constant starting
orientation was used, but due to the robot’s tumbling, the
final orientation is difficult to predict, which influences future
paths. Training with a greater range of initial poses (possibly
through the use of automatic domain randomization [21])
may produce a policy which is better suited for navigation
with multiple setpoints. Path planning with these setpoints
should allow for navigation to any location assuming that the
terrain allows it. Demonstrating this is left to future work.

Other future improvements include increasing the commu-
nication rate for more precise control, and modelling latency
rather than forcing a fixed delay. Modifying the reward
function to encourage greater energy efficiency, speed, or
precision could benefit specific use cases.

(a) Trained on flat ground, evaluated on flat ground. (b) Trained on uneven surface, evaluated on flat ground.

(c) Trained on flat ground, evaluated on uneven surface. (d) Trained on uneven surface, evaluated on uneven surface.

Fig. 8: Robot trajectories on flat and uneven ground for real-world trials. All distances are in meters.

(a) Trained on flat ground, evaluated on valley-hill terrain.
Darker areas represent valleys and lighter areas are hills.

(b) Trained on uneven surface, evaluated on valley-hill terrain.
Darker areas represent valleys and lighter areas are hills.

Fig. 9: Robot trajectories on valley-hill ground for real-world trials. All distances are in meters.

VII. ACKNOWLEDGEMENTS

The authors would like to thank all the members of the
Center for Distributed Robotics Laboratory for their help.
This material is based upon work partially supported by the
Corn Growers Association of MN, the Minnesota Robotics
Institute (MnRI), Honeywell, and the National Science
Foundation through grants #CNS-1439728, #CNS-1531330,
and #CNS-1939033. USDA/NIFA has also supported this
work through the grant 2020-67021-30755. The source code
used for URDF generation is provided in a repository at
https://github.com/MOLLYBAS/urdf randomizer.

REFERENCES

[1] B. Hemes, D. Fehr, and N. Papanikolopoulos, “Motion primitives for
a tumbling robot,” in 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sep. 2008, pp. 1471–1476.

[2] A. Schwartzwald and N. Papanikolopoulos, “Sim-to-real with domain
randomization for tumbling robot control,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, May 2020, pp.
4411–4417.

[3] B. Hemes, D. Canelon, J. Dancs, and N. Papanikolopoulos, “Robotic
tumbling locomotion,” in 2011 IEEE International Conference on
Robotics and Automation, May 2011, pp. 5063–5069.

[4] S. Dhull, D. Canelon, A. Kottas, J. Dancs, A. Carlson, and N. Pa-
panikolopoulos, “Aquapod: A small amphibious robot with sampling
capabilities,” in 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Oct 2012, pp. 100–105.

[5] H. Sun, G. Song, J. Zhang, Z. Li, Y. Yin, A. Shao, J. Zhan, M. Xu,
and Z. Zhang, “Design of a tumbling robot that jumps and tumbles for
rough terrain,” in 2013 IEEE International Symposium on Industrial
Electronics, May 2013, pp. 1–6.

[6] B. Hemes and N. Papanikolopoulos, “Frictional step climbing analysis
of tumbling locomotion,” in 2012 IEEE International Conference on
Robotics and Automation, May 2012, pp. 4142–4147.

[7] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz,
B. McGrew, J. W. Pachocki, J. Pachocki, A. Petron, M. Plappert,
G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,
L. Weng, and W. Zaremba, “Learning dexterous in-hand
manipulation,” CoRR, vol. abs/1808.00177, 2018. [Online]. Available:
http://arxiv.org/abs/1808.00177

[8] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner,
S. Bohez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion
for quadruped robots,” CoRR, vol. abs/1804.10332, 2018. [Online].
Available: http://arxiv.org/abs/1804.10332

[9] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” CoRR, vol. abs/1703.06907, 2017.
[Online]. Available: http://arxiv.org/abs/1703.06907

[10] A. Maekawa, A. Kume, H. Yoshida, J. Hatori, J. Naradowsky, and
S. Saito, “Improvised robotic design with found objects,” in NeurIPS
Workshop on Machine Learning for Creativity and Design, 2018.

[11] J. V. Albro and J. E. Bobrow, “Motion generation for a tumbling robot
using a general contact model,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 4,
April 2004, pp. 3270–3275 Vol.4.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

[13] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[14] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in
Advances in Neural Information Processing Systems, S. Solla,
T. Leen, and K. Müller, Eds., vol. 12. MIT Press, 2000.
[Online]. Available: https://proceedings.neurips.cc/paper/1999/file/
6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[15] L. C. Melo, D. C. Melo, and M. R. Maximo, “Learning humanoid
robot running motions with symmetry incentive through proximal
policy optimization,” Journal of Intelligent & Robotic Systems, vol.
102, no. 3, pp. 1–15, 2021.

[16] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Recurrent
policy gradients,” Logic Journal of the IGPL, vol. 18, no. 5, pp.
620–634, 09 2009. [Online]. Available: https://doi.org/10.1093/jigpal/
jzp049

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online].
Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[18] B. Hemes, N. Papanikolopoulos, and B. O’Brien, “The adelopod
tumbling robot,” in 2009 IEEE International Conference on Robotics
and Automation, May 2009, pp. 1583–1584.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[20] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015.
[Online]. Available: http://arxiv.org/abs/1502.05477

[21] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
2019.

