

Convolutional Neural Networks

ECE 532

May 1st, 2020

Tessa McChesney tmcchesney@wisc.edu 907 319 2701

Luis Guzman ljguzman@wisc.edu 906 982 9985
Yong-Cheol Cho ycho98@wisc.edu 907 796 4402

mailto:tmcchesney@wisc.edu
mailto:ljguzman@wisc.edu
mailto:ycho98@wisc.edu

Abstract

Convolutional neural networks (CNN) have become the method of choice for solving many
cutting-edge problems in computer vision and image recognition. They are a topic of ongoing research in
engineering and computer science, and are at the core of many famous commercial artificial intelligence
systems. They function by using multiple layers of convolution and pooling prior to a standard
fully-connected neural network to allow the computer to learn a set of patterns to classify the data. In this
project, we explain how these convolutional and pooling layers work. In the warm-up activities, students
will be able to generalize how dimensions of inputs and outputs change between each CNN layer, as well
as experiment with pooling layer code to visualize the results of pooling. The main activity is broken up
into three parts. In the first part, students will complete three computational exercises corresponding to the
math used in the three main layers of a CNN. Second, students will use and edit code provided to see how
different filters affect an input image of Bucky at a convolutional layer. Lastly, students will see how the
different layers fit together and how critical filters are to the success of the CNN, where we apply these
methods to the problem of handwritten digit recognition. Though a true CNN could achieve much better
results, the simple structure we chose to illustrate these concepts resulted in an 8% error rate when
classifying the testing dataset. After completing these activities, we expect students to understand the
benefits of a CNN, how convolutional and pooling layers work individually and together, and how it
differs from a traditional neural network. CNNs that are used in practice have more complicated
structures, but after successfully completing this lesson and exercises, students should have the basic
understanding of these more complicated networks.

Background

A typical structure of a CNN. Source: Elia, E. (2019)

In a traditional neural network, there is typically only one layer of input nodes. When applied to

image recognition, the usual method would then be to unfold and stack the 2D image into a single column
vector. This works well for simple tasks, but would fail for many modern computer vision problems. The

issue is that traditional neural networks are not designed to search for spatial patterns in the images, and
instead rely entirely on global relationships between pixels for classification.

Convolutional neural networks aim to solve this issue by using a combination of convolution and
pooling layers to extract localized patterns from the image prior to a traditional fully-connected neural
network for classification. This idea was first proposed in a paper in 1998 by Yann LeCun et al., who was
inspired by how the human visual cortex processes patterns from light. LeCun applied the concept to the
MNIST dataset for handwritten digit recognition, and used the technology for a commercial system to
verify the writing on bank checks. This work was gradually expanded upon and in 2012, Alex Krizhevsky
et al. unveiled AlexNet, which could classify the 1.2 million image ImageNet dataset with a top-5 error
rate of 17.0%. More recent CNNs can achieve an error rate of 3.6% on this dataset.

As with any machine learning technique, CNNs can have issues with selection bias in the training
data and can run into ethical issues when used to classify people (for example, facial recognition
software). When people of minority age, race, and gender groups are not adequately represented in the
training data, many CNNs have had higher error rates when used by people of these groups. Current
research, such as a 2017 paper by Howard et. al, is investigating the best methods for accounting for this
bias. Regardless of the methods used to correct for it, avoiding selection bias is an essential part of ethical
engineering practices when designing a CNN.

In the following sections, we will explain the concepts of convolution and pooling layers
independently, and show how these techniques can lead to more accurate image classification.

Convolution

In the convolutional layer of a CNN, the operation can be thought of as moving a predefined filter
across the image, and calculating a new value for each pixel. The equation for the convolution operation
is

where ​f​ is the original image, ​g​ is a matrix consisting of some filter coefficients, ​h​ is the resulting
convolved matrix, and ​k​ and ​l​ are the dimensions of g. For each element in the output matrix, we simply
compute the weighted sum of surrounding elements, as specified by the filter matrix. We will illustrate
this operation with the following example:

Take an image of an outline of a square. Here “1” corresponds to a bright pixel, and “0” is a dark
pixel. We want to blur this image, so an averaging filter is used . 1

1 For simplicity, we omitted the factor of 1/9 that should be present in each element of the filter matrix.

To compute the first element, the filter is overlaid in the top-left of the image. We then compute

the sum of all 9 elements covered by the filter, where each element is multiplied by the filter coefficient
covering them.

The next element is computed in the same fashion.

Similarly, we can fill the rest of the interior.

Now, what about the edges? Moving the filter to the edge would cause the filter to be outside

dimensions of our original image. This brings up the concept of ​padding​. We then have two options: crop
the resulting matrix to reflect only those positions that are valid or we can produce a result matrix that is
the same size as our image by expanding the image by a row of zeros on every side. These methods are
called ​valid padding​ and ​same padding​ respectively.

Valid padding (Dimensions: 6x6 ==> 4x4)

Same padding (Dimensions: 6x6 ==> 6x6)

The last step in the convolution layer is to apply the rectified linear (ReLU) function to eliminate
any negative values in our convolved matrix. This function sets all negative values to zero while keeping
the positive values unchanged. It should be noted here that the ReLU function is non-linear, and these
non-linearities play an important role in allowing our neural networks to learn arbitrary functions.

The ReLU function. f(x) = x for x > 0, f(x) = 0 for x < 0

Figure created by authors using Desmos

Through this relatively simple convolution operation, we can produce filters that can extract
complex patterns from our images. Oftentimes in a CNN, multiple convolutional layers are used. The first
layer usually performs simple operations like edge detection or low-pass filtering. The deeper layers can
build on these extracted features to form more complex features like an entire limb of an animal or wheel
of a car. In order for these deeper layers to extract these features, we must reduce the dimensionality of
our problem. Since a typical image can be over a million pixels in size, our goal is to only keep the
information and features that are important to classifying the images. The next topic, pooling, will provide
an essential method of dimension reduction.

Pooling

The goal of pooling layers is to reduce the amount of data to be processed by sub-sampling the
input data. There are two main methods of pooling: ​max pooling​ and ​average pooling​. Both methods
work by moving a kernel across the input matrix and calculating a single output value for multiple inputs.
Max pooling will simply take the maximum value and average pooling takes the average. In general, max
pooling performs better since it also functions as a filter to block unwanted noise in the data.

In the following example, we start with an image of our square after it has been sent through an
edge detector and ReLU function. The 3x3 pooling kernel starts by calculating the top-left value, just like
in convolution.

Similarly for the rest of the values:

Both convolution and pooling layers also have a parameter called the ​stride​, which is used to
control how much the dimensions of the output matrix are reduced. The stride defines how much we
move the kernel at each step in the algorithm. In the above example, we used a stride of one, since we
only moved the pooling kernel by one value at each step. The resulting matrix had two fewer values in
each dimension (6x6 => 4x4). Here is the same example, but with a stride value of three:

Next, we move the kernel to the right by three, the value specified by the stride.

Similarly, we move the kernel down by three and compute the last row:

With a stride of three, the dimensions of our matrix decreased significantly (6x6 => 2x2), while

retaining all the information about where the edges exist in the image. This pooled layer could then be fed
into a standard fully-connected neural network to determine if an image were a four (has vertical edges)
or a two (no vertical edges).

Warm-up

1. Given a size M x M picture as an input to a convolutional layer, and an N x N filter applied to that
input, what will be the dimensions of the output? You may assume stride is 1, and use valid
padding.

2. Now suppose you use a stride of S with the same layer (so same input and filter dimensions).
What are the dimensions of the output now? Hint: you may need to use floor division and use
valid padding).

3. Open the file “WarmUp_Question3_Pooling.ipynb” and complete the following code:
a. Fill in the two blank lines of code inside the ​maxPool ​ function. You may want to use

the “​x // y ​” operator for floor division.
b. Write an average pooling function and output the resulting image. You should be able to

use almost the exact same code as the ​maxPool ​ function, but change one line.

Main activity

1. Convolutional Layer

a. Given the input matrix M and the filter F, what is the output of the convolutional layer
when using a stride of 1 and valid-padding?

b. Using the same matrices M and F and valid-padding, what is the output when using a
stride of 2?

2. Apply ReLu activation function to your answer from part 1.a). What is the resulting matrix?

3. Pooling Layer
a. Apply a max-pooling layer with a 2x2 pooling kernel and a stride of 1 to your answer

from part 1.a). What is the resulting matrix?
b. Do the same thing as in part 3.a), except use an average-pooling layer instead of a

max-pooling layer to your answer from 1.a) (still 2x2 kernel with stride of 1). What is the
resulting matrix? (Do not skip the factor of ¼)

4. Open and run the code in the file “Main_Activity_Question4.ipynb” to answer the following
questions:

a. What kind of filter is ​filter1 ​? In other words, what is it doing to the original Bucky
photo?

b. How does changing the value of the stride parameter affect the output of the
convolutional layer?

c. Add another convolutional layer with a diagonal line filter (hint: use an identity matrix
for a filter). What does the Bucky image look like now?

d. Each convolutional layer can have many filters applied to them, and each filter has their
own corresponding bias. Edit the ​conv() ​ function to accept multiple filters and biases
for each filter. The bias is added to the resulting convolution of the input and filter. Apply
at least three filters (and biases) of your choice to the first convolutional layer and output
your resulting Bucky's (Note: you will need to output a separate image for each filter)

5. This last file puts together all of the layers we learned into a small but complete CNN structure.
Our CNN consists of 1 convolutional layer, an ReLu activation layer, a max pooling layer, and a
fully connected neural network with a single hidden layer. Note that our implementation of CNN
is incomplete, as true CNNs have multiple instances of the layers mentioned, backpropagate all
the way back to the first layer instead of just through the neural network, and typically have lower

error rates. This CNN does hand-written digit recognition using the scikit-learn database. Print
show_digit(digits.images[x]) ​ where ‘x’ is an index between 0 and 999 to see one of
the 1000 8x8 handwritten digits being used. You will see that some of them are even hard for us
to classify just by looking at them!

Open and run the code in “Main_Activity_Question5.ipynb”. How does the error rate change
when we specify different filters and different stride amounts? Note that the single layer neural
network uses stochastic gradient descent, so error values may differ slightly between runs due to
the stochastic nature.

References

Bernet, C. (n.d.). Handwritten Digit Recognition with scikit-learn - The Data Frog. Retrieved April 29,

2020, from ​https://thedatafrog.com/handwritten-digit-recognition-scikit-learn

Dyer, C. (2019). Neural Networks [CS 540 PowerPoint slides]. University of Wisconsin-Madison.

http://pages.cs.wisc.edu/~dyer/cs540/notes/09_neuralNets.pdf

Elia, E. (2019, July 28). A Guide to Building Convolutional Neural Networks from Scratch. Towards

Data Science. Retrieved April 29, 2020, from
https://towardsdatascience.com/a-guide-to-convolutional-neural-networks-from-scratch-f1e3bfc3
e2de

He, K., Zhang, X., Ren, S. (2016). Deep Residual Learning for Image Recognition. ​IEEE Conference on

Computer Vision and Pattern Recognition (CVPR)​, pp. 770-778. ​10.1109/CVPR.2016.90

Howard, A., Zhang, C., and Horvitz, E. (2017), "Addressing bias in machine learning algorithms: A pilot
study on emotion recognition for intelligent systems," IEEE Workshop on Advanced Robotics
and its Social Impacts (ARSO), pp. 1-7.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2017). ImageNet classification with deep convolutional
neural networks. Commun. ACM 60, 6, 84–90. DOI:https://doi.org/10.1145/3065386

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324. ​10.1109/5.726791

Saha, S. (2018, December 15). A Comprehensive Guide to Convolutional Neural Networks. Towards

Data Science. Retrieved April 29, 2020, from
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli
5-way-3bd2b1164a53

https://thedatafrog.com/handwritten-digit-recognition-scikit-learn
http://pages.cs.wisc.edu/~dyer/cs540/notes/09_neuralNets.pdf
https://towardsdatascience.com/a-guide-to-convolutional-neural-networks-from-scratch-f1e3bfc3e2de
https://towardsdatascience.com/a-guide-to-convolutional-neural-networks-from-scratch-f1e3bfc3e2de
https://ieeexplore.ieee.org/xpl/conhome/7776647/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7776647/proceeding
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/5.726791
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Appendix

Solutions to Warm-Up Activities

1. Output is a square matrix of size (M - N) + 1
2. Output is a square matrix of size ⎣(M - N) / S⎦ + 1 (⎣x⎦ means “floor x”)
3. a) ​H_out = (H - Hp) // stride + 1

 W_out = (W - Wp) // stride + 1
b) ​def avgPool(x, Hp, Wp, stride):
 # get output dimensions
 H, W = x.shape
 H_out = (H - Hp) // stride + 1
 W_out = (W - Wp) // stride + 1
 out = np.zeros((H_out, W_out))

 # pool
 for i in range(H_out):
 for j in range(W_out):
 ​out[i, j] = np.mean(x[i*stride:i*stride+Hp,
j*stride:j*stride+Wp]) ​# only line different from maxPool

 return out

 ​Output of average pooling should look something like this (pending parameters used):

Solution to Main Activity

1. a)

b)

2.

3. a)

b)

4. a) “​Filter1​” is a vertical edge detection filter, so the vertical edges on Bucky are more
emphasized than non-vertical ones..
b) As you increase the stride, time to convolve decreases, the output image shrinks in size, and
the output image becomes more pixelated.

c) Note: image may vary slightly depending on filter size and stride

d) Answers can vary, but this is one implementation:
 def conv(x, filt, ​bias​, stride, pad):
 """
 - H: height (number of rows)
 - W: width (number of columns)
 - F: number of filters
 - bias: array of biases to apply to each filter
 - stride: stride value to apply to each image
 - pad: number of rows and columns to zero-pad around image
 """
 H, W = x.shape
 F,​ HH, WW = filt.shape ​# need to pad matrices to be same

dimension with this implementation
 # get output dimensions
 H_out = 1 + (H + 2 * pad - HH) // stride
 W_out = 1 + (W + 2 * pad - WW) // stride
 out = np.zeros((​F,​ H_out, W_out))
 pad_widths = ((pad,), (pad,))

 xpad = np.pad(x, pad_widths, 'constant')
 Hpad, Wpad = xpad.shape
 # perform convolution
 for f in range(F):
 for i in range(0, Hpad-(HH-1), stride):
 for j in range(0, Wpad-(WW-1), stride):
 prod = np.sum(np.multiply(filt​[f]​, xpad[i:i+HH,
j:j+WW]))
 out[​f​, int(i/stride), int(j/stride)] = prod +
bias[f]

 return out

5. Higher stride values increase the error, and generally larger and less filters increase the error (and

vice versa).

