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Abstract

State of the art methods continue to face difficulties automating many tasks, particularly those which

require human-like dexterity. The proposed ”Internet of Skills” enables robots to learn advanced

skills from a small set of expert demonstrations, bridging the gap between human and robot abilities.

In this work, I train Reinforcement Learning (RL) control policies for the tasks of hand following

and block pushing. I build a sim-to-real pipeline and demonstrate these policies on a Kinova Gen3

robot. Lastly, I test a prototype system that allows an expert to control the Kinova robot using

only their arm movements, captured using a Vicon motion tracking system. My results show that

performance of state of the art RL methods could be improved through the use of demonstrations,

and I build a shared representation of human and robot action that will enable robots to learn new

skills from observing expert actions.
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1 Introduction

Despite recent advances in machine learning, there is still an entire class of tasks that are too

complex to automate with robots, but cannot be completed entirely by humans. State-of-the-art

methods, for example, cannot always address the planning and robot control problems for unknown,

cluttered, and uncertain environments, and working in hazardous environments may require a robot

to be operated remotely by a human. These teleoperation schemes usually lack the dexterity of a

human worker and the precision and repeatability of full robotic automation, thus combining the

least desirable elements of humans and robots. This thesis is part of a proposed system, entitled the

“Internet of Skills” (IoS), which promotes and enhances the notion of a Tactile Internet to enable

humans and machines in dispersed geographical regions to operate as a unified entity, intelligently

balancing both human and robot (i.e., bilateral) strengths and weaknesses.

Teaching robots new skills continues to be a challenging task. When presented with a new

scenario, a robot must know what the goal is and also how to achieve that goal. Methods like

Reinforcement Learning (RL) have shown success in solving only one of these problems. In RL, a

robot agent is given a clear goal, and it must learn the optimal way of completing that goal. This

works well for simple tasks that can easily be quantified but is less effective when goals are abstract

or require significant future planning.

To address some of these issues, we can utilize human demonstrations to teach robots new skills.

By directly observing the actions of the expert, the robot can learn the goal of a demonstrated skill.

Additionally, when the robot is unsure how to act, it can refer to a cache of expert experience and

choose to act similarly to how the expert would in that situation. Using expert demonstrations

has been shown to improve convergence rates and performance, especially in high-dimensional tasks

such as object manipulation [1]. Furthermore, using reinforcement learning algorithms simultane-

ously with expert demonstrations can produce a policy that exceeds the performance of ”imperfect”

expert demonstrations [2–5]. Possible benefits include higher precision than humanly-attainable and

the filtering of hand-shaking when performing delicate manipulation tasks. Including expert demon-

strations in the training process can significantly improve the time it takes the robot to learn new

skills and teach robots to complete tasks that were previously too complex to be done autonomously.

In this thesis project, I create virtual environments and train Reinforcement Learning algorithms

for the task of following the expert’s hand location while avoiding obstacles in the workspace, a

crucial prerequisite that will enable the IoS framework. I expand on this by mapping the expert’s

full arm movements to the robot, and demonstrate this prototype system on a physical Kinova Gen3

7DOF robot. Finally, I evaluate the performance of both the expert and various RL algorithms on

a block pushing task, highlighting the performance gap that can be closed through the use of expert

demonstrations. This work builds all the necessary data pipelines and provides initial research that

will enable further work in utilizing demonstrations to train robots to complete new skills.

2 Related Work

Learning from Demonstrations: Forming the connection between human and robot actions requires a

shared language where human-given commands can understood by any robot; however, human action
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Figure 1: Learning from Demonstrations

is difficult to represent in an analytic form. Learning from demonstrations (LfD) is a technique for

determining a robot agent’s control policy from human (expert) demonstrations. It shares similarity

with reinforcement learning, although in RL, a policy is learned through interaction and exploration

in a training environment rather than from expert demonstrations. In both RL and LfD, the robot’s

surroundings are represented by a state S and the robot performs actions A. The same state and

action space can be used to quantify the experience of a human demonstrator. A policy π maps

the robot’s observed surroundings to an action π : S → A. The goal is to learn a policy that

either optimizes a certain reward function (RL) or one that performs similar actions to an expert

demonstrator (LfD).

Vecerik et al. show how demonstrations can be utilized to improve performance on various ma-

nipulation tasks like placing a peg inside of a hole [6]. Their method modifies the reinforcement

learning algorithm DDPG by placing expert demonstrations inside of the replay buffer during train-

ing. As the agent is sampling trajectories to train the policy, some of the experience it receives

is from the agent and some is from the expert. In this way, the expert can show the agent what

”good” actions are, and the agent will converge behavior similar to the expert. They found that

training from demonstrations yields higher performance and converges faster than state of the art

reinforcement learning methods on the same task.

The collection of expert experience has often been the limiting factor for developing practical

applications of this research. Because the expert must share the same state and action space as the

robot, expert demonstrations are usually collected either through teleoperation or by kinesthetically

manipulating the joints of the robot, a process which can become tedious when multiple demonstra-

tions are required to teach a robot a single skill [6, 7]. Additionally, teleoperation and kinesthetic

teaching do not realistically represent how a human may perform the skill, and these interfaces fail

to capture the fluidity and nuance of certain gestures. In order for robots to learn human skills

naturally, a more effective teaching interface must be developed.

The Correspondence Problem: The goal of the IoS framework is to teach robots new skills using

only the movements of the expert’s body. This mode of teaching suffers from what is known as

the correspondence problem—how can human actions be mapped to a representation that the agent

can understand? In reinforcement learning, this usually equates to mapping from human to robot

joint angles. Mohammad and Nishida solve the correspondence problem analytically for humanoid

robots [8]. This is generally possible to do since the actuators of the robot line up closely with
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the human body, and the mapping must only account for small differences in joint segment length

and actuator placement. Learning this mapping on non-humanoid robots is more complicated and

usually requires some form of neural network. For example, [9] uses recurrent neural networks

(RNNs) with Long-Short Term Memory (LSTM) to map from human poses to robot joint angles.

Lastly, some approaches try to avoid the correspondence problem altogether. Jackson et al. used

virtual reality in order to avoid the need for a learned correspondence mapping [10], but only the

expert’s hand is tracked, missing information about the orientation of the rest of the expert’s arm

when completing the skill.

Reinforcement Learning: For the hand tracking task, I draw inspiration from Sangiovanni et

al. [11], who uses reinforcement learning to solve inverse kinematics and obstacle avoidance. In this

task, the robot is given a goal location, and it must learn how to position its arm to reach that

location while avoiding an obstacle. Particularly, my choice of reward function is inspired by this

work. They use a method known as normalized advantage functions (NAF), which is similar to

deep Q-learning for continuous tasks. I utilize more recent RL algorithms that have been shown

to have better convergence rates and performance than NAF. Furthermore, I propose significant

modifications to the method, which improves agent performance and stability, and demonstrate the

task on a physical Kinova robot.

Proximal Policy Optimization (PPO) [12] is an example of an on-policy reinforcement learning

algorithm. It is characterized by a policy update equation that includes a clipping parameter, which

ensures that no single policy update is too large and destroys the policy. Previous work has shown

success when applying PPO to robot control tasks, such as object manipulation [13] and control of

a humanoid robot [14]. PPO is robust to hyperparameters, so it requires very little tuning in order

to get optimal performance.

Twin delayed deep deterministic policy gradients (TD3) [15] is a modified version of the deep

deterministic policy gradients (DDPG) [16] algorithm. It uses two critic networks in order to mini-

mize the Q-function approximation error, and they delay the policy updates to every-other update

of the critic network to further decrease the error. It features a higher sample efficiency than PPO

since it is an off-policy algorithm and thus stores its experience in a replay buffer so that preferable

trajectories can be reused for training. In general, off-policy algorithms are less stable than on-policy

ones, so more hyperparameter tuning may be required.

Actor-critic using Kronecker-factored trust region (ACKTR) [17] and advantage actor-critic

(A2C) [18] are two other examples of on-policy learning algorithms, and soft actor-critic (SAC) [19]

and deep deterministic policy gradients (DDPG) [16] are additional off-policy algorithms that will

appear later in this paper.

Experience Copy: When training reinforcement learning algorithms on large state or action

spaces, a common technique is to use a method known as transfer learning or experience copy

[20]. In this technique, a policy is trained on an easier subtask that may only require exploring a

smaller subspace of the state space. Once the agent has mastered the easier task, it is trained on

incrementally more challenging tasks. Sangiovanni et al. found this method to improve performance

on the obstacle avoidance task, where they first trained the agent on stationary obstacles before

training on a dynamic environment with moving obstacles [11].

3



(a) 5 DOF robot (b) 7 DOF Kinova Gen3 Robot

Figure 2: The hand following virtual environments. The target point is shown in green, and the

obstacle is in blue.

3 Method

3.1 Virtual Environments

All of the algorithms mentioned in this paper are trained in simulation before being demonstrated

on a physical robot. OpenAI Gym [21] is an open-source toolkit for training RL algorithms within

virtual environments. I built the virtual environments within this framework in order to provide a

familiar interface that can be reused when testing multiple RL and LfD algorithms. OpenAI gym also

supports the MuJoCo physics engine, which I will use for its superior simulation accuracy, including

electro-mechanical responses of the robot actuators. MuJoCo is capable of using the Unified Robot

Description Format (URDF) so that a multitude of robot configurations can easily be loaded into

the simulation.

For initial testing, I created two simulated robots to be used in the Gym environments. The first

robot is a 5 degree of freedom (DOF) manipulator, shown in Figure 2a. This robot is a modified

version of the OpenAI Reacher environment and is a simplified model of a human arm, with a 3

DOF ball joint at the shoulder, and two single DOF hinge joints at the elbow and wrist. The second

robot is a 7 DOF Kinova Gen3 Robot, shown in Figure 2b. Kinova supplies URDF models for their

robots, and these have been converted to the MuJoCo XML format by the community [22].

3.2 Task 1: Hand following

The first task I examine is following the hand location of the expert, while avoiding obstacles in the

workspace. Each environment (Figure 2) features an obstacle (in blue), and a target point (shown

in green). The robot must learn to reach the target point, while avoiding the obstacle. This is a

non-trivial task, since every goal location has infinitely many possible solutions for the joint angles

of the robot.

3.2.1 Reward Function

For this application, I build on the reward function presented in Sangiovanni et al. [11].
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r = c1RT + c2RA + c3RO + c4RX .

Large distances from the end effector to the target point are penalized with the RT term. [11]

proposes a Huber Loss function for this purpose.

RT = Lδ(d) = −

 1
2d

2 for |d| < δ

δ(|d| − 1
2δ) otherwise

where d is the Euclidean distance between the target point and the end effector and δ is the Huber

Loss parameter, which determines the regions of linear and quadratic loss.

RA penalizes large actions (a) to reduce overshoot and encourage the manipulator to remain

stationary after it has reached the target point.

RA = −||a||2.

During training, I disable collisions in the MuJoCo environment so that the manipulator can pass

freely through the obstacles. This is to ensure continuity of the action space —with collisions enabled,

a large action could result in zero movement, which would cause an incorrect policy update. If the

manipulator passes through an obstacle, it receives a large negative reward in the form of RO.

RO = −
(

dref

dO + dref

)p
where dO is the minimum distance from the manipulator to the center of obstacle, and p sets the

exponential decay rate. dref is a constant that determines how close the manipulator can get to the

obstacle without incurring significant penalty. This value is set to be approximately the size of the

obstacle or slightly larger.

Because collisions are disabled in MuJoCo, I also penalize behavior which would be impossible

on a physical robot. RX discourages behavior where the manipulator passes through itself to reach

the target point by penalizing large joint angles.

RX =

N∑
n=0

min
(

0,
π

2
− θn

)
where N is the total number of hinge joints and θn is the angle of each joint.

3.2.2 Observation & Action Spaces

The observation (state) space defines what information the robot agent can access to determine its

policy. At each timestep, the robot agent receives:

st = { q, q̇, qT , qO, dT , dO }

where q and q̇ represent the robot’s joint angles and velocities, qT is the location of the target,

and qO is the location of the obstacle. Joint angles are represented as cosine/sine pairs (i.e. qi →
(cos(qi), sin(qi)) in order to avoid discontinuities and bound them to [−1, 1], which stabilizes training
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and improves performance. For ball joints that use quaternions, raw quaternion values are used. dT

and dO are the distances from the robot to the target and obstacle, respectively. These last two

values were added to improve convergence times, as these are the actual values that the agent must

optimize. Additional discussion and data that supports this choice of observation space are provided

in the results.

In the case of a ball-type joint, the observation space gains an additional dimension, since ball

joints are represented as 4-dimensional quaternions. This has the disadvantage of adding additional

dimensionality that can slow down training, but it crucially avoids the problem of gimbal lock, which

can cause exploding gradients during training.

The action space is comparatively simple, and is equal to the number of degrees of freedom of

the robot. The network is trained to output motor control commands, so all error correction must

be learned by the policy network.

Optimizing over this state space is a challenging task. For the 5 DOF robot with a ball-type

shoulder joint, the observation space includes 20 continuous dimensions (6 joint angles, 6 joint ve-

locities, 3 target coordinates, 3 obstacle coordinates, and 2 distances), and the action space includes

5 continuous dimensions. Since attempting to explore the entire state space would be impossi-

ble, state-of-the-art reinforcement learning algorithms and techniques to simplify this exploration

problem are required.

3.2.3 Experience Copy

In order to limit the amount of exploration needed, I segment the training process into easier sub-

tasks. In the first task, I ask the agent to reach stationary goal points that are near the obstacle.

For high DOF robots, I can further limit this first sub-task to the z = 0 plane and include the z

dimension later. By placing this constraint, I decrease the size of the observation space to explore,

so training is quicker and more likely to converge.

Next, using experience copy, I load in the policy I trained on the first sub-task, and begin the

training process on the next sub-task. The second sub-task is to trace out a variety of arc patterns.

Ideally, all points that make-up the arc trajectory have been seen by the agent during the training

of the first sub-task. Training on the second task makes minor improvements to the agent’s ability

to track moving objects.

3.3 Task 2: Block pushing

The second environment I tested tasks the robot with pushing a block from a randomly initialized

starting location to a goal location. Figure 3 shows the block pushing environment. The block

is shown in green and the goal location is the transparent red cube. The robot must first learn

to contact the green block, then learn to slide it across the table to the goal location without

overshooting. The robot is initialized at approximately shoulder-height in order to be consistent

with the expert’s demonstrations. I train various RL algorithms on this environment and compare

the performance to the expert completing the same task.
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Figure 3: The block pushing environment

3.3.1 Reward Function

The block pushing task can be expressed with either sparse or dense reward functions. The sparse

representation would give the agent zero reward until the block is within a specified radius of the goal,

then the agent would receive a large positive reward. In the dense representation, the agent receives

a negative reward at every time step that is proportional to the distance from the block to the goal

location. The sparse representation is more challenging, but it is a more realistic representation of

the task since in physical systems, it is not always possible to know the distances between objects

without complicated vision systems or sensors. I chose the dense representation to increase the

likelihood of convergence, but I also included sparse rewards to give preference to trajectories that

sufficiently complete the goal.

The reward function for the block pushing task is

r = c1RG + c2RT

RG quantifies the distance of the block from the goal location and provides a positive reward

when it’s within the goal radius.

RG =

+ 1/c1 for |d| < δ

− δ(|d| − 1
2δ) otherwise

Using only RG is not sufficiently dense since the agent must position its arm to contact the block

before it can generate any improved rewards. In order to avoid the sparse reward problem, I also

included the target loss RT from the hand following task with the following modification: in the

context of block pushing, d represents the distance from the agent’s end effector to the block so that

the agent is encouraged to just reach the block before it learns to push it.

3.3.2 Observation & Action Spaces

The observation space for the block pushing task is

st = { q, q̇, qB , qG − qB }

7



where q and q̇ represent the robot’s joint angles and velocities, qB is the location of the block,

and qG is the location of the goal. Similarly to hand tracking, qG − qB is used instead of just qG

because that is the feature the agent must minimize, so including this explicitly prevents the policy

network from having to learn this relationship. The same sinusoidal transformation is applied to

revolute joint angles to bound them to [−1, 1].

The action space is the same as the hand tracking environment and is equal to the number of

degrees of freedom of the robot.

3.4 Training

All policy networks were trained using a machine running Ubuntu 20.04 with an Intel(R) Core(TM)

i7-4770K CPU @ 3.90GHz, 16 GiB of memory, and a Nvidia GeForce RTX 3070 GPU. Initially,

policy networks were trained to 10 million time steps, but I noticed very little improvement after

5 million steps. All figures and results are reported at 5 million time steps. In order to minimize

the effect of stochastic policy training, networks were trained three times using different seed values.

The reported results are the average of the three training instances.

For the implementations of PPO, ACKTR, and A2C, I modified the implementation of [23]. For

TD3 and DDPG, I used [15]. For SAC, I used [24]. All networks are implemented using PyTorch.

3.5 Full Arm Following Prototype

Lastly, I built a prototype system that allows the expert to fully control a Kinova Gen3 robot using

motion tracking data of their arm. This prototype extends the hand-following task, since the robot

follows all joint angles of the expert rather than just the hand location. Expert trajectories are

recorded using a Vicon motion tracking system. Reflective trackers are placed on the expert’s right

arm and torso, according to the layout of the plug-in gait upper limb model [25]. This tracker

placement is standard for human motion capture applications, and an example image is shown in

Figure 4. The expert’s joint angles are calculated from the Vicon tracker positions, then these angles

are directly mapped to the actuators on the Kinova robot. This direct mapping is only possible

Figure 4: View of the motion tracking data and tracker placement. The expert’s entire right arm

and torso are tracked
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because the Kinova robot has the same number of degrees of freedom as the human arm and the

physical dimensions of the Kinova arm closely match the expert’s1. If either of these requirements are

not met, a more complicated mapping must be learned through recurrent neural networks (RNNs),

for example. In order to match the 5DOF robot used in initial experiments, only five of the seven

degrees of freedom are mapped, representing every possible movement other than wrist rotation and

abduction. The full calculation which maps expert joint angles to the Vicon robot is given in the

Appendix.

I implemented a sim-to-real pipeline for the Kinova Gen3 robot so that both simulated and

physical robots could be controlled using this system. The Kinova robot requires 1 kHz control

feedback in order to prevent jerky motion, so low-level control must be handled by the embedded

device on-board the Kinova robot [26]. My control interface sends the robot joint velocities, which are

proportional to the error between the desired and current joint angles. The joint velocity commands

and joint feedback are communicated using Kinova’s Robot Operating System (ROS) interface.

3.6 Experimental Setup

In order to evaluate expert performance on the block pushing task, I gathered a dataset of 30 expert

demonstrations. The target block is also tracked using the Vicon system, so its position can be used

to calculate the expert’s reward at every time step. Expert performance is averaged over the 30

trials, using a variety of block starting locations.

After comparing performance on the two simulated environments, I offer two physical trials

that demonstrate the sim-to-real pipeline. Both the hand following policy and the arm following

prototype are compared. I demonstrate the two control methodologies on the block pushing task

and on a pick-and-place task, which shows the feasibility and benefits of using such a system for

teleoperated control. The coordinate systems of the Vicon system, mujoco simulation and physical

demonstration environment are all aligned so that movements can be accurately quantified across

all three environments.

1The expert’s arm lengths are 0.35m shoulder to elbow and 0.30m elbow to wrist. The Kinova robot

measures 0.42m and 0.31m for the same joint segments, respectively. The Kinova robot’s last link is 0.32m

from wrist to end effector, which is much longer than the experts wrist to finger length. This mismatch was

avoided by using a custom fabricated push stick, which effectively extends the expert’s last joint segment

length to match the Kinova robot.
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(a) Comparison of RL algorithms on the stationary

goal environment

(b) Comparison of PPO and TD3 experience copy

on the trajectory following environment

Figure 5: Results on the hand following environments.

4 Results

4.1 Task 1: Hand following

The results of six different RL algorithms on the stationary goal environment are shown in Figure

5a. TD3 and PPO were the top performing algorithms, with SAC and DDPG tied for third. The

off-policy algorithms (TD3, SAC, and DDPG) converged very quickly, then made incremental im-

provements for the remainder of the training time. In contrast, the on-policy algorithms took much

longer to converge but they experienced a more stable training process (i.e., the reward value nearly

monotonically increases). Since these values are averaged over three trials, TD3 and DDPG appear

to be more stable than their single trials, where I often observed reward fluctuations up to an order

of magnitude in size.

In Figure 5b I compare the performance of PPO and TD3 when using experience copy. The

copied policies are compared against policies that are trained directly on the trajectory following

environment. In this test, the sample efficiency of TD3 is particularly noticeable. Any advantage

that is gained by using experience copy is quickly negated by ”vanilla” TD3’s fast convergence

to near-optimal values. PPO, on the other hand, showed a 26% performance gain when using

experience copy. The additional reward was enough to achieve comparable performance to TD3 on

the trajectory-following task.

The PPO implementation is parallelized over 8 environment instances, so PPO took 45 minutes

to train, whereas TD3 was single-threaded and took over 30 hours to train for the same number of

time steps. However, one advantage of TD3 is its sample efficiency, and as shown in Figure 5a, it

reaches its maximum reward at around two million time steps. The corresponding training training

time is 7.5 hours, which is still much longer than it takes for PPO to converge.

Additionally, when viewing the control policies in simulation, I noticed that TD3 produced

irregular trajectories, whereas PPO tended to follow smooth arcs. This is quantified in Figure 6,

where I compare the distances to the target of the two policies. Although TD3 accrues a better
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Figure 6: Distances between the robot fingertip and the target for both the PPO and TD3 policy

networks. PPO is found to be much more stable, despite having a lower average reward than TD3.

(a) Reward comparison of the additional

distance information

(b) Reward comparison of the sinusoidal

joint angle representation

Figure 7: Comparison showing performance increase of two of the proposed modifications to the

observation space.

reward, PPO shows preferable behavior by holding the fingertip stationary at the target point. This

gives major preference to choosing PPO for manipulator control tasks due to its comparably safe

and predicable trajectories.

In Figure 7, I provide some experiments that demonstrate the performance gains of the method

described in Section 3.2.2. Figure 7a considers the inclusion of the additional distance information

(dT and dO) in the observation space. Including this additional information showed a 20.6% increase

in the asymptotic reward. Similarly, Figure 7b shows that applying the sinusoidal transformation

to the raw joint angles improved performance by 27.3%. These improvements to the method in [11]

can be applied to future LfD tasks to improve stability and performance.

A analysis of the evironment hyperparameters is given in the Appendix in Figure 11. Since

changing these values affects the calculated reward of a given policy, I chose to evaluate them on

average distances to the obstacle and the target. A small target distance and large obstacle distance

are desired. I note that c1 and c3 had the smallest impact on performance simply because the

magnitude of RT and RO is smaller than the other values. After training the control policy using

the optimal hyperparameters, I observed more robust obstacle avoidance, where the average obstacle
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distance rose from 4.97 cm to 11.83 cm. The target distance was not significantly affected, rising

from 7.18 cm to 8.54 cm, which is within the margin of error I recorded for multiple trials.

As shown in Table 1, both the 5 DOF and 7 DOF Kinova robots were able to successfully reach

the goal points within 13 cm average error. The 5DOF robot performed better than the Kinova

robot, likely because the shoulder ball joint offers far more flexibility than the three real shoulder

actuators on the Kinova robot. The values in Table 1 include cases where the goal point is inside

of the obstacle, where I observed the robot to correctly avoid the obstacle while maintaining the

closest possible distance to the goal point. This is an important feature of this system, since it

demonstrates robust obstacle avoidance, even if the human operator is unaware of an obstacle and

instructs the robot to collide with it. These results demonstrate a successful method for using real-

world trajectories to operate a robot using reinforcement learning-based control policies, a necessary

prerequisite for using demonstrations to train robots to complete more complex tasks.

Robot Policy Error (cm)

Kinova 15.2

5DOF 11.2

Table 1: Comparison of target point error between different robots

4.2 Task 2: Block pushing

Figure 8 shows the performance of TD3, PPO, and the expert on the block pushing environment.

TD3 was able to produce a policy that could successfully push the block to the goal around half of

the time. I observed that most of the failures of TD3 were due to the robot overshooting the goal,

so it’s possible that adding an additional term to the reward function that prioritizes slow block

movement could improve performance.

PPO, on the other hand, was not able to produce a successful policy. The agent was not able

to learn how to contact the block, so the reward value never increased significantly. I believe this

Figure 8: Training results on the block pushing environment
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is because there are infinitely many ways to reach the object, and PPO struggles in this undercon-

ditioned scenario. Whereas the hand following environment had an additional obstacle constraint

that gave preference to one specific configuration, in the block pushing environment, the constrain-

ing factor is how well the configuration pushes the block towards the goal location. This is a much

more challenging constraint to learn, and the result is that subsequent policy updates destroy any

progress that is made from successful trajectories. Since on-policy learning throws away successful

trajectories after a single training update, the successful trajectories make up a negligible portion

of the training dataset, and training data ends up being mostly noise.

Using the trajectories from the expert dataset, I evaluated the expert’s performance using the

same reward function as the agent. The expert performed 67.0% better than TD3, demonstrating

the gap in performance that learning from demonstrations could help fill. The expert successfully

completed the task 100 percent of the time, but still received a negative reward from every time step

before the target was in the goal location.

4.3 Physical Trials & Prototype

Figures 9 and 10 show physical trials on a Kinova Gen3 robot. The images on the left show the raw

expert locations and the locations of a wooden block. The center images show the arm following

prototype, where the robot must follow all joint angles of the expert. The images on the right

demonstrate the PPO hand following policy trained in section 4.1.

The first trial (Figure 9) focuses on the block pushing task. This trial is different from the task

in section 4.2 in that the robot is completely teleoperated by the expert using Vicon data, and it

has no knowledge of the block or goal locations. The environments are aligned so that the block

and goal have the same locations as the expert environment. The sequence of images demonstrates

how both the hand following policy and full arm following prototype are able to push the block

to the goal location. The arm following prototype correctly matches the joint angles of the expert

demonstration, with the correct elbow orientation. The hand following policy is only constrained to

the expert’s hand path, so it exhibits some learned orientation of the elbow, which is also able to

complete the task.

Figure 10 demonstrates both control policies in a more challenging scenario. In this trial, the

expert picks up the block and places it inside of a shallow box. Since the expert trajectories do

not currently gather any data to operate the robot’s gripper, the gripper is controlled manually.

Both methods were able to successfully maneuver to the starting location and pick up the block.

When lifting the block, the arm following prototype holds the block naturally, similar to the expert.

The hand following policy positions its elbow even higher than the object, which is not an ideal

configuration since it nearly reaches a singularity in the elbow joint of the manipulator. In the last

row of images, the arm following prototype successfully places the block inside of the box and the

hand following policy drops the block from around 20cm above the box. This is due to the hand

location nearly reaching the edge of the workspace, where the hand following is not as accurate.

These physical demonstrations show how an expert can teleoperate a robot using only their own

movement and a motion capture system. This offers a far more intuitive method for controlling

robots than traditional teleoperation systems and can be utilized when specific expertise must be
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Figure 9: Demonstration of the Kinova robot completing the block pushing task (left to right: expert

demonstration, direct joint mapping, learned hand following)

Figure 10: Demonstration of the Kinova robot completing the pick and place task (left to right:

expert demonstration, direct joint mapping, learned hand following)
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quickly replicated on a robot (e.g. in tele-health or manufacturing). Since the expert and agent

share the same state and action space, this prototype system can be utilized in future research to

teach the agent new skills autonomously from demonstrations.

5 Conclusion

In this work, I integrated human and robot action using motion capture and reinforcement learning.

Both direct joint mapping and learned hand following are implemented on a Kinova Gen3 robot, and

I demonstrate successful teleoperation on block pushing and pick and place tasks. Multiple state of

the art RL algorithms are compared to the performance of the expert, highlighting the ability for

human demonstrations to aid in training. Although PPO was preferred for the hand following task,

only TD3 was able to successfully complete the block pushing task, which is a trade-off that must

be considered in future research. This work provides foundational insight and builds the systems

necessary for developing an Internet of Skills that will enable robots to learn complex tasks from

human demonstrations.

6 Future work

Future goals for this project are to utilize the expert demonstrations during training, similar to [6].

Doing so would improve convergence times and allow the robot agent to complete more complicated

skills. There are many imitation learning techniques such as generative adversarial imitation learning

[27] that could be leveraged in order to develop new LfD methods that offer better performance and

more stable training than current methods.

Next, I propose the use of recurrent neural networks (RNNs) to form a mapping from human to

robot joint angles. Robots that have significantly different actuator layout than a human arm will

not be able to directly interpret the actions that the human experts take in the environment. This

constraint led me to choose the Kinova 7DOF robot for my initial testing, since the human-robot

mapping is nearly identity. Learning a joint angle mapping with RNNs would allow for any robot

phenotype to learn from human demonstrations, even if the number of actuators or physical layout

varies greatly from a human’s.

Lastly, I would like to incorporate gripping data into the demonstration dataset so that the robot

can learn when to open or close its end effector. Initially, the robot could infer that when an object

is lifted, the gripper must be closed, and when it is set down, the gripper must be open. Later,

CNNs could be trained to predict whether the expert is gripping an object, similar to [28], which

would give more reliable gripper data.
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Appendix A - Vicon to Kinova joint mapping

The Vicon Nexus software is able to compute joint angles using the plug-in gait model; however, the

Kinova robot’s actuator configuration requires that joint angles are calculated in a specific order so I

needed to calculate the joint angles from the raw position data rather than use the angles calculated

by Vicon’s software. To find the joint angles in a format that could be mapped to the Kinova robot,

I first convert positions to quaternions, then from quaternions to Euler angles. All rotations are

defined as being relative to the ”zero position,” shown in Figure 4. The shoulder tracker is defined

as the origin of the entire coordinate frame.

First, I calculate the unit vectors from shoulder to elbow, elbow to wrist, and wrist to finger

(ûsho-elb, ûelb-wri, ûwri-fin). For the shoulder movement, the quaternion from the zero position (x̂) to

the current position (ûsho-elb) can be found with

a = ûsho-elb × x̂

w = 1 + ûsho-elb · x̂

qsho = [ax, ay, az, w]

and then normalizing the result q̂sho = qsho/|qsho|. The first two actuator angles (shoulder

horizontal abduction and vertical flexion) can be found by converting q̂sho to Euler angles in the

intrinsic ZY X ordering.

[θZ , θY , θX ] = QUAT TO EULER(q̂sho, ’ZYX’)

The Z axis rotation is actuator 1, and the Y axis rotation is actuator 2.

θ1 = θZ

θ2 = θY

The X rotation represents actuator 3 (shoulder rotation), but this value cannot be uniquely

determined using only ûsho-elb. Actuator 3 is calculated by setting the X rotation to zero, then

calculating the true value using ûelb-wri:

R0 = EULER TO MATRIX([θZ , θY , 0], ’ZYX’)

ẑsho = R0ẑ

θ3 = cos−1(ûelb-wri · ẑsho)

where R0 is the rotation matrix of q̂sho with the X Euler angle set to zero.

19



Actuators 4 and 62 are comparatively simple to calculate as the angles between two vectors.

θ4 = cos−1(ûsho-elb · ûelb-wri)

θ6 = cos−1(ûelb-wri · ûwri-fin)

In order to incorporate the wrist rotation and abduction, the same process as above for calculating

shoulder angles can be used. This is left to future work, since these degrees of freedom were not

necessary for the demonstrations in this paper.

Appendix B - Hyperparameters

Parameter Optimal Value Estimated Value*

c1 1500 1000

c2 10 10

c3 200 60

c4 0.01 0.01

δ 0.005 0.01

p 6 8

dref 0.03 0.03

Table 2: Hand Following Hyperparameters.

*Estimated values were used for generating Figures 5-7.

Parameter Value

c1 1000

c2 100

δ 0.06

Table 3: Block Pushing Hyperparameters.

2Actuator 5 is wrist abduction and is not currently implemented
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Figure 11: Performance comparison of hand following hyperparameter choices. Optimal values are

marked with the black dashed line and are given in Table 5. c4 and dref are chosen empirically since

there is no quantifiable selection method.
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Parameter Value

Learning rate 3 ∗ 10−4

Entropy coefficient 0.01

Value loss coefficient 0.5

Epochs per update 10

Num mini batch 1

Discount Factor (γ) 0.99

GAE Discount Factor (γGAE) 0.95

Clip 0.2

Table 4: PPO Hyperparameters

Parameter Value

Start Timesteps 25 ∗ 103

Evaluation Frequency 5 ∗ 103

Noise STD 0.1

Batch Size 256

Discount Factor (γ) 0.99

Tau τ 0.005

Policy Frequency 2

Table 5: TD3 Hyperparameters
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