

Waypoint Setting Via Webcam and OpenCV
ECE 439 Final Project: Team 15

May 4th, 2020

Luis Guzman

Lan Hu

Bailey Ramesh

Introduction

There are many different ways to control the intended path of a mobile robot. Initially, pre-

planned paths were created for the robot to follow by inputting a set of explicit path segments or

waypoints. Alternatively, the robot can receive user control input during operation. The goal of this

project was to implement a first-person path planning mechanism in real time using user input from video

image clicks. By selecting a location on an image from a camera mounted to the robot, the coordinate can

be determined in the world and the path plan updated.

There are several benefits of this alternative control method. First, the operator does not have to

rely on the accuracy of dead-reckoning to ensure that the robot remains on the intended path. Instead, one

waypoint is selected at a time, and the user receives visual feedback on the actual location of the robot.

The next waypoint is set with respect to the current position of the robot, so error does not accumulate

between waypoints. This intuitive method is also easy to learn for novice users and provides good

stimulus-response compatibility. The user can also respond better to a dynamic environment. New

obstacles can be avoided as they appear by changing the set waypoint. Lastly, unknown environments can

be explored because no initial path-planning is required and visual feedback is provided to the user. In

addition to wanting to make these improvements, this project was chosen because its implementation

requires some aspects of computer vision and other more complex areas useful in robotics. This project

required significant changes to our current ROS infrastructure due to this new approach to control, and

it’s a more fun and enjoyable way of controlling the robot.

Our goals were assigned in an order necessary to accomplish this task. First, camera distortions

need to be controlled for in order to provide accurate image to world coordinate mapping. Second, world

points need to be pulled from image coordinates, which requires knowing the intrinsic parameters of the

camera and the transformation from the two-dimensional camera coordinates to the three-dimensional

world coordinates. Lastly, the waypoint control node needs to be constantly updated to hold only one

waypoint that is overwritten with this world point at each click. The robot should then advance to this

waypoint until it is within tolerance and wait for the next waypoint from the user.

Design

For the vision processing, we chose to use OpenCV due to its native integration with ROS. The

OpenCV API also includes simple functions for performing perspective transformations that are required

to gather 3D locations from our 2D webcam data. These functions are built on what is known as the

pinhole camera model, which drastically simplifies the math required to do the transformation, without

sacrificing significant accuracy. The model is shown below in Equation 1.

 (1)

where:

● s is the scaling factor, used to scale the distance values to the camera

● [u, v, 1] is the homogeneous camera coordinates, or the point on the screen that is clicked

● fx and fy are the focal lengths of our camera lens

● cx and cy are the camera coordinates of the center of our image

● r and t represent the rotation and translation of our camera in the world frame

● [X, Y, Z, 1] is the homogeneous world coordinates of the point we clicked

The matrix consisting of f and c is also called the intrinsic or camera matrix. The matrix

consisting of r and t is called the extrinsic matrix. Solving for the world coordinates is then just a matter

of finding these matrices and solving the above equation for X, Y, and Z. Thankfully, OpenCV also has

tools for us to generate these intrinsic (camera) and extrinsic matrices.

The first step was to find the camera matrix by measuring distortions in our camera. In order to

do this, we took 16 images of a standard chessboard pattern. After gathering the images, we loaded them

into a python script provided by OpenCV, which identifies the chessboard pattern and measures how

much the straight chessboard lines are distorted by the camera. Using OpenCV’s calibrateCamera

and getOptimalNewCameraMatrix, we can then load the found camera matrix into our runtime

code.

Figure 1. Example images of our intrinsic calibration. The image on the right shows the image that is

generated after OpenCV has detected the chessboard pattern

Figure 2. OpenCV reconstruction of the location of our multiple chessboard images (left), with

the distortion of each image plotted on the right.

We found that the Raspberry Pi did not have the required processing power to perform some of

the computer vision algorithms necessary for the calibration. Because of this, the calibration step was

completed using a Python script on a desktop computer.

Next we had to generate the extrinsic matrix by perspective calibration. This process involved

placing marks on the ground at known locations and gathering their (u, v) screen-space coordinates. After

gathering these points, we generated the extrinsic matrix with OpenCV’s solvePNP function.

Figure 3. The points we used for perspective calibration (7 out of 10 total shown)

The last piece of information we needed was the scaling factor. Originally, we expected the

scaling factor to be a single value dependent on the geometry of the transformation. The solvePNP

function, however, gave a range of scaling values that appeared to have a positive correlation with the v-

coordinate. Exploiting this observation, we were able to fit an equation to our perspective calibration data

to find s in terms of the v-coordinate:

Figure 4. Rational fit of the scaling factor with respect to the image v-coordinate value

We then had all of the information needed to solve the 3D reconstruction equation. The intrinsic

and extrinsic matrices were saved to the ROS working directory so that these calibrations did not have to

be run each time the program was started. We then generated the 3D location by inverting our camera (C)

and rotation (R) matrices and using them to solve for the world coordinates (Equation 2).

 (2)

The last goal was then to implement this new waypoint information into a ROS node. We

modified the set_waypoints.py node from class to incorporate our computer vision code. Since the

camera is mounted to the robot, the 3D reconstruction provides coordinates in the robot’s coordinate

frame. In order to convert this to a waypoint, we transformed the coordinate in the robot’s frame back to

the world frame using the current position and heading of the robot:

 (3)

where X and Z are the 3D reconstructed points from above1, the robot coordinates are the 2D position of

the robot, and theta is the robot’s pose angle relative to world “North”.

After transforming into the world coordinates, we simply published our new waypoint to the

waypoint_xy ROS topic and set path_complete to be false so the waypoint_follower knows

to begin tracking a path to the next waypoint. One unexpected difficulty we ran into while running our

code was the magnitude of the strain that processing the video put on the CPU of the Raspberry Pi.

Because of this, our robot would often receive delayed control signals, causing it to go haywire not long

after starting the program (Figure 5). To cope with this, we reduced the resolution of the video and scaled

the (u,v) coordinates accordingly, which allowed the robot to maintain stability while running the

program.

1 Note that the Z value from our 3D reconstruction is actually the Y value in our ROS waypoint code. The
discrepancy is due to how OpenCV defines the coordinates of the pinhole camera model vs. the coordinate system
we have used all semester

Figure 5. Initially, our robot would go haywire not long after running the launch file. Shown here

is the dead-reckoning data collection of the robot zig-zagging after one click.

Another issue we ran into was that it was difficult to make sharp turns and easily maneuver the

robot due to the limited field of view of the camera. To solve this, we attached the camera to a servo

which allowed us to turn the camera left and right to make sharper turns. Our initial plan was to

implement this in the set_waypoints node, but we ran into some issues with running multiple GUIs

in one ROS node. Instead, we created a new node which launches a servo control slider and sends the

PWM signal data to the waypoint setting node, and this seemed to work much better. Once the waypoint

setting node gets the PWM signal, the camera rotation angle is known. The X and Z coordinates in

Equation 3 are then rotated by this angle before determining the X and Y world coordinates.

Results

To assess the performance of our new control method, we set up a series of targets at increasing

distance from the robot. After moving to each target, the error was measured and recorded, and this can

be seen in Figure 7. From this data, it is clear that the robot was the most accurate at distances of

approximately 0.6 to 1.5 meters. At points closer than 0.6 meters and farther than 1.5 meters, the error

starts to increase greatly. This error is to be expected due to the camera’s proximity to the ground. Far

distances are compressed into a very small v-coordinate range, so clicking them accurately is difficult.

The far-distance error could be improved by raising the camera, but this was not practical for our small

mobile robot.

Figure 7. Distance vs. error curve of our robot’s attempts of hitting five targets of increasing distance.

The short-distance error could potentially be due to our intrinsic camera calibration. Closer

objects are more heavily affected by camera distortion, so if the calibration is not perfect, these waypoints

could be transformed incorrectly. We took several chessboard images and only used the best seven

images in order to get the calibration results with least error. Ideally, we would have used more images in

our calibration. As long as the user specifies waypoints within two meters of the robot, error values are

well-controlled.

We tested maneuvering the robot through an apartment without line-of-sight, and it is simple to

spot obstacles in the webcam and use the OpenCV interface to avoid them. Important challenges included

maneuvering around blind corners by rotating the webcam, and adjusting the path on-the-fly as new

obstacles are spotted. After multiple successful runs, we conclude that our concept of gathering waypoint

from a webcam image is a successful method of teleoperated robot control.

Discussion

The robot was able to move to the position with relatively high precision (error within 10%) if the

distance to the target is within the range of 0.6 meters to 1.5 meters. We may be seeing this improved

accuracy because this is the range which we used to calibrate our camera. As we try setting waypoints

farther from the robot, the trigonometry that is used to solve for the world coordinates starts approaching

a vertical asymptote. This may be what is contributing to the larger errors that we see in these locations.

Those errors could possibly come from the intrinsic matrix that we get from the initial calibration,

extrinsic matrix and the scaling factor from the perspective calibration. Moreover, we couldn’t undistort

the video due to the processing speed of Raspberry Pi, as it is relayed to the user, so the distorted image

clicked by the user could cause few-pixel inaccuracy, and that could result in higher error for points at the

edge of the images.

All in all, this project taught us quite a bit about some basic things that can be done with OpenCV

and how to incorporate a project idea into a working ROS infrastructure. We were successfully able to

undistort our camera image and perform a perspective calibration using OpenCV’s camera calibration

functions, which also taught us quite a bit on the intrinsic parameters of a camera and how to use two-

dimensional camera coordinates to predict three-dimensional coordinates in a world frame. We were also

able to adjust our waypoint setting node to consistently take in and hold one set of coordinates at a time.

Setting up this communication between ROS and OpenCV proved to be one of our most challenging

goals.

There are many future goals that we would have liked to implement given more time. For

instance, our current workflow does not handle invalid data points very well. Clicks above or near the

horizon will either result in y-coordinates that are negative or extremely large, and the extent of this can

be seen by our increasing error with increasing target y-values. A limit could be placed either on y-

coordinate or v-coordinate values to prevent such errors. We would have also liked to integrate some

form of obstacle avoidance, or at the very least obstacle detection, to deal with path entries that pass

through obstacles or enter bounded areas, such as the opposite sides of walls. Hand-in-hand with this

would be the addition of a SLAM algorithm. It would be interesting to have a mapped augmented reality

environment which would allow the user to select locations in other areas of the map that the robot can’t

see with the camera. The robot could then use the map to plan a path to this location accordingly. These

are just a few examples of the many ways in which the usability of this control mechanism could be

improved.

References

"Calculate X, Y, Z Real World Coordinates from Image" 10 Apr. 2019,

https://www.fdxlabs.com/calculate-x-y-z-real-world-coordinates-from-a-single-camera-using-
opencv/. Accessed 4 May. 2020.

 "Camera Calibration - OpenCV-Python Tutorials - Read the Docs." http://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html.
Accessed 4 May. 2020.

 "Camera Calibration and 3D Reconstruction — OpenCV 2.4" 31 Dec. 2019,

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
. Accessed 4 May. 2020.

Canu, S. "Mouse Events – OpenCV 3.4 with python 3 Tutorial ... - Pysource." 27 Mar. 2018,

https://pysource.com/2018/03/27/mouse-events-opencv-3-4-with-python-3-tutorial-27/. Accessed
4 May. 2020.

 Contributions

 Luis Lan Bailey

Concept/Planning/Re

search

33 33 33

Design - Hardware

(Covid limitations)

60 20 20

Design - Logic 33 33 33

Programming 33 33 33

Presentation 33 33 33

Report 33 33 33

90% of project work was done on Microsoft Teams calls, ensuring the workload was evenly distributed.

