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Introduction 

 

There are many different ways to control the intended path of a mobile robot. Initially, pre-

planned paths were created for the robot to follow by inputting a set of explicit path segments or 

waypoints. Alternatively, the robot can receive user control input during operation. The goal of this 

project was to implement a first-person path planning mechanism in real time using user input from video 

image clicks. By selecting a location on an image from a camera mounted to the robot, the coordinate can 

be determined in the world and the path plan updated. 

There are several benefits of this alternative control method. First, the operator does not have to 

rely on the accuracy of dead-reckoning to ensure that the robot remains on the intended path. Instead, one 

waypoint is selected at a time, and the user receives visual feedback on the actual location of the robot. 

The next waypoint is set with respect to the current position of the robot, so error does not accumulate 

between waypoints. This intuitive method is also easy to learn for novice users and provides good 

stimulus-response compatibility. The user can also respond better to a dynamic environment. New 

obstacles can be avoided as they appear by changing the set waypoint. Lastly, unknown environments can 

be explored because no initial path-planning is required and visual feedback is provided to the user. In 

addition to wanting to make these improvements, this project was chosen because its implementation 

requires some aspects of computer vision and other more complex areas useful in robotics. This project 

required significant changes to our current ROS infrastructure due to this new approach to control, and 

it’s a more fun and enjoyable way of controlling the robot.  

Our goals were assigned in an order necessary to accomplish this task. First, camera distortions 

need to be controlled for in order to provide accurate image to world coordinate mapping. Second, world 

points need to be pulled from image coordinates, which requires knowing the intrinsic parameters of the 

camera and the transformation from the two-dimensional camera coordinates to the three-dimensional 

world coordinates. Lastly, the waypoint control node needs to be constantly updated to hold only one 

waypoint that is overwritten with this world point at each click. The robot should then advance to this 

waypoint until it is within tolerance and wait for the next waypoint from the user.  

 

  



Design 

 

For the vision processing, we chose to use OpenCV due to its native integration with ROS. The 

OpenCV API also includes simple functions for performing perspective transformations that are required 

to gather 3D locations from our 2D webcam data. These functions are built on what is known as the 

pinhole camera model, which drastically simplifies the math required to do the transformation, without 

sacrificing significant accuracy. The model is shown below in Equation 1. 
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where:   

● s is the scaling factor, used to scale the distance values to the camera 

● [u, v, 1] is the homogeneous camera coordinates, or the point on the screen that is clicked 

● fx and fy are the focal lengths of our camera lens 

● cx and cy are the camera coordinates of the center of our image 

● r and t represent the rotation and translation of our camera in the world frame 

● [X, Y, Z, 1] is the homogeneous world coordinates of the point we clicked 

 

The matrix consisting of f and c is also called the intrinsic or camera matrix. The matrix 

consisting of r and t is called the extrinsic matrix. Solving for the world coordinates is then just a matter 

of finding these matrices and solving the above equation for X, Y, and Z. Thankfully, OpenCV also has 

tools for us to generate these intrinsic (camera) and extrinsic matrices. 

The first step was to find the camera matrix by measuring distortions in our camera. In order to 

do this, we took 16 images of a standard chessboard pattern. After gathering the images, we loaded them 

into a python script provided by OpenCV, which identifies the chessboard pattern and measures how 

much the straight chessboard lines are distorted by the camera. Using OpenCV’s calibrateCamera 

and getOptimalNewCameraMatrix, we can then load the found camera matrix into our runtime 

code.  

 



 
Figure 1. Example images of our intrinsic calibration. The image on the right shows the image that is 

generated after OpenCV has detected the chessboard pattern 

 

 
Figure 2. OpenCV reconstruction of the location of our multiple chessboard images (left), with 

the distortion of each image plotted on the right. 

  

We found that the Raspberry Pi did not have the required processing power to perform some of 

the computer vision algorithms necessary for the calibration. Because of this, the calibration step was 

completed using a Python script on a desktop computer.  

Next we had to generate the extrinsic matrix by perspective calibration. This process involved 

placing marks on the ground at known locations and gathering their (u, v) screen-space coordinates. After 

gathering these points, we generated the extrinsic matrix with OpenCV’s solvePNP function. 

 



 
Figure 3. The points we used for perspective calibration (7 out of 10 total shown) 

 

The last piece of information we needed was the scaling factor. Originally, we expected the 

scaling factor to be a single value dependent on the geometry of the transformation. The solvePNP 

function, however, gave a range of scaling values that appeared to have a positive correlation with the v-

coordinate. Exploiting this observation, we were able to fit an equation to our perspective calibration data 

to find s in terms of the v-coordinate: 

 

 
Figure 4. Rational fit of the scaling factor with respect to the image v-coordinate value 

 

We then had all of the information needed to solve the 3D reconstruction equation. The intrinsic 

and extrinsic matrices were saved to the ROS working directory so that these calibrations did not have to 

be run each time the program was started. We then generated the 3D location by inverting our camera (C) 

and rotation (R) matrices and using them to solve for the world coordinates (Equation 2).  



 
 

  (2) 

 

 

The last goal was then to implement this new waypoint information into a ROS node. We 

modified the set_waypoints.py node from class to incorporate our computer vision code. Since the 

camera is mounted to the robot, the 3D reconstruction provides coordinates in the robot’s coordinate 

frame. In order to convert this to a waypoint, we transformed the coordinate in the robot’s frame back to 

the world frame using the current position and heading of the robot: 
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where X and Z are the 3D reconstructed points from above1, the robot coordinates are the 2D position of 

the robot, and theta is the robot’s pose angle relative to world “North”. 

After transforming into the world coordinates, we simply published our new waypoint to the 

waypoint_xy ROS topic and set path_complete to be false so the waypoint_follower knows 

to begin tracking a path to the next waypoint. One unexpected difficulty we ran into while running our 

code was the magnitude of the strain that processing the video put on the CPU of the Raspberry Pi. 

Because of this, our robot would often receive delayed control signals, causing it to go haywire not long 

after starting the program (Figure 5). To cope with this, we reduced the resolution of the video and scaled 

the (u,v) coordinates accordingly, which allowed the robot to maintain stability while running the 

program.  

 
1 Note that the Z value from our 3D reconstruction is actually the Y value in our ROS waypoint code. The 
discrepancy is due to how OpenCV defines the coordinates of the pinhole camera model vs. the coordinate system 
we have used all semester 



 
Figure 5. Initially, our robot would go haywire not long after running the launch file. Shown here 

is the dead-reckoning data collection of the robot zig-zagging after one click.  

 

Another issue we ran into was that it was difficult to make sharp turns and easily maneuver the 

robot due to the limited field of view of the camera. To solve this, we attached the camera to a servo 

which allowed us to turn the camera left and right to make sharper turns. Our initial plan was to 

implement this in the set_waypoints node, but we ran into some issues with running multiple GUIs 

in one ROS node. Instead, we created a new node which launches a servo control slider and sends the 

PWM signal data to the waypoint setting node, and this seemed to work much better. Once the waypoint 

setting node gets the PWM signal, the camera rotation angle is known. The X and Z coordinates in 

Equation 3 are then rotated by this angle before determining the X and Y world coordinates. 

 

Results 

 

To assess the performance of our new control method, we set up a series of targets at increasing 

distance from the robot. After moving to each target, the error was measured and recorded, and this can 

be seen in Figure 7. From this data, it is clear that the robot was the most accurate at distances of 

approximately 0.6 to 1.5 meters. At points closer than 0.6 meters and farther than 1.5 meters, the error 

starts to increase greatly. This error is to be expected due to the camera’s proximity to the ground. Far 

distances are compressed into a very small v-coordinate range, so clicking them accurately is difficult. 

The far-distance error could be improved by raising the camera, but this was not practical for our small 

mobile robot. 

 



 
Figure 7. Distance vs. error curve of our robot’s attempts of hitting five targets of increasing distance. 

 

The short-distance error could potentially be due to our intrinsic camera calibration. Closer 

objects are more heavily affected by camera distortion, so if the calibration is not perfect, these waypoints 

could be transformed incorrectly. We took several chessboard images and only used the best seven 

images in order to get the calibration results with least error. Ideally, we would have used more images in 

our calibration. As long as the user specifies waypoints within two meters of the robot, error values are 

well-controlled. 

We tested maneuvering the robot through an apartment without line-of-sight, and it is simple to 

spot obstacles in the webcam and use the OpenCV interface to avoid them. Important challenges included 

maneuvering around blind corners by rotating the webcam, and adjusting the path on-the-fly as new 

obstacles are spotted. After multiple successful runs, we conclude that our concept of gathering waypoint 

from a webcam image is a successful method of teleoperated robot control. 

  



Discussion 

 

The robot was able to move to the position with relatively high precision (error within 10%) if the 

distance to the target is within the range of 0.6 meters to 1.5 meters. We may be seeing this improved 

accuracy because this is the range which we used to calibrate our camera. As we try setting waypoints 

farther from the robot, the trigonometry that is used to solve for the world coordinates starts approaching 

a vertical asymptote. This may be what is contributing to the larger errors that we see in these locations. 

Those errors could possibly come from the intrinsic matrix that we get from the initial calibration, 

extrinsic matrix and the scaling factor from the perspective calibration. Moreover, we couldn’t undistort 

the video due to the processing speed of Raspberry Pi, as it is relayed to the user, so the distorted image 

clicked by the user could cause few-pixel inaccuracy, and that could result in higher error for points at the 

edge of the images. 

All in all, this project taught us quite a bit about some basic things that can be done with OpenCV 

and how to incorporate a project idea into a working ROS infrastructure. We were successfully able to 

undistort our camera image and perform a perspective calibration using OpenCV’s camera calibration 

functions, which also taught us quite a bit on the intrinsic parameters of a camera and how to use two-

dimensional camera coordinates to predict three-dimensional coordinates in a world frame. We were also 

able to adjust our waypoint setting node to consistently take in and hold one set of coordinates at a time. 

Setting up this communication between ROS and OpenCV proved to be one of our most challenging 

goals.  

There are many future goals that we would have liked to implement given more time. For 

instance, our current workflow does not handle invalid data points very well. Clicks above or near the 

horizon will either result in y-coordinates that are negative or extremely large, and the extent of this can 

be seen by our increasing error with increasing target y-values. A limit could be placed either on y-

coordinate or v-coordinate values to prevent such errors. We would have also liked to integrate some 

form of obstacle avoidance, or at the very least obstacle detection, to deal with path entries that pass 

through obstacles or enter bounded areas, such as the opposite sides of walls. Hand-in-hand with this 

would be the addition of a SLAM algorithm. It would be interesting to have a mapped augmented reality 

environment which would allow the user to select locations in other areas of the map that the robot can’t 

see with the camera. The robot could then use the map to plan a path to this location accordingly. These 

are just a few examples of the many ways in which the usability of this control mechanism could be 

improved.   
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90% of project work was done on Microsoft Teams calls, ensuring the workload was evenly distributed. 


