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1 Purpose

To use Poisson statistics to analyze decay data of Cesium-137 and to calculate the half-life of excited Barium-
137.

2 Theory

The decay process of Cesium-137 is

137Cs −→137 Ba∗ −→137 Ba + γ(662 keV)

where the Cesium first decays into an excited state of Barium through Beta decay, then when the excited
state relaxes, a 662 keV photon is emitted. Since the arrival of Gamma-rays in our detector is independent
of time since the last detection event, this process can be modeled through Poisson statistics. In the first
part of this experiment, we are going to be testing the accuracy of this statistical model.

In the second part of the experiment, we will calculate the half-life of the

137Ba∗ −→137 Ba + γ(662 keV)

transition using both a linear and non-linear model.

3 Procedure

3.1 Part 1: Probability Distributions

In the first part of this lab, we wanted to investigate elements Poisson statistics for counting gamma-ray
events. We used the same set up at experiment 1: a Cesium-137 source placed below a Sodium Iodide (NaI)
crystal, after which a Photomultiplier Tube (PMT) would pickup incident gamma-radiation and send a count
signal to a Multichannel Analyzer (MCA).

For our first trial we set up the MCA to count for 200ms per channel. There are 1024 channels on the
MCA, so the total duration of the trial was 204.8 seconds. After gathering the data, we imported it into
Matlab for processing. Figure 1 shows the histogram of the data, using a bin size of 5. Since our goal is to
verify Poisson statistics, we first computed the mean and standard deviation directly:

Mean (µ): 179.88
St Dev (σ): 13.82

And compared these values with those predicted by Poisson statistics:
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Poisson St Dev : 13.41

and calculated the uncertainty in the mean:
Mean Uncertainty (σx̄) = 5.62

Lastly, we selected 9-10 random data points and computed the the Poisson uncertainty σPoisson =
√
x

for each one. We compared the data points to the true mean found above. These comparisons are shown in
the Appendix. We then calculated the standard deviation of the mean and compared with the true mean.

µPoisson = 179.6
µPoisson Uncertainty: 13.4
Poisson uncertainty std of mean 0.42

The Poisson mean is well within our uncertainty. All the values match within their errors, so Poisson
statistics is a valid method of analyzing this process.

Figure 1: A histogram and Gaussian fit of our first (200ms dwell time) trial

Next we repeated the above calculations using an 800ms dwell time:
Mean (µ): 718.3
St Dev (σ): 26.36

Poisson St Dev (σx̄): 26.80
Mean Uncertainty (σx̄) = 22.45

And the values calculated from our 9-10 values were:
µPoisson = 718.1
µPoisson Uncertainty: 26.8
Poisson uncertainty std of mean 0.84

Again, all the values match up very well, so Poisson statistics is a valid method of analyzing this process.
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Figure 2: A histogram and Gaussian fit of our second (800ms dwell time) trial

3.2 The Decay of Excited Quantum States

In the second part of this lab, we wanted to measure and analyze the decay process of the excited state of Bar-
ium. We first had to prepare our sample by eluting the Cs-137 source. This consists of flushing a concentrated
NaCl solution through the source to remove some of the Ba-137 while leaving the Cesium in place. After
the eluting process, we then had a small beaker of excited Barium dissolved in the NaCl solution. We placed
this sample below the photomultiplier tube and used the multichannel analyzer to measure its decay process.

The half-life of excited Barium is just a few minutes, but we gathered data for approximately one hour
to ensure we captured the entire decay process. We set the dwell time to 10 seconds per channel. Once the
graph flat-lined, we knew we could stop the data collection since we had reached the background radiation
level.

Barium follows the equation for exponential decay N(t) = N0e
−λt, where λ is the decay rate, N0 is the

initial number of gamma-ray counts, and the lifetime τ is equal to 1/λ. We uses both a non-linear and linear
fit to calculate the half-life of excited Barium. From the non-linear fit

y = Ae−t/τ +B

we can read off the parameters N0 = A, τ , and B is the ambient background radiation. Figure 4 shows
our non-linear fit for excited Barium decay. Our non-linear fit model was

f(x) = a*exp(-b*x)+c
Coefficients (with 95% confidence bounds):
a = 1.492e+04 (1.49e+04, 1.494e+04)
b = 0.004519 (0.004509, 0.00453)
c = 138.6 (135.3, 141.9)

Goodness of fit:
SSE: 2.679e+05
R-square: 0.9999
Adjusted R-square: 0.9999
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RMSE: 27.55

So our background is 139 counts every 10 seconds, our initial counts is 14,920, and lambda is 0.004519.

Figure 3: A non-linear fit for our decay data

Alternatively, we could also plot the data on a log plot to find the coefficients.

N(t) = N0e
−λt +B

ln

(
N(t)−B

N0

)
= −λt

the slope of the linear fit is then −λ, and we can exclude the background since this will show up clearly on
a log plot. Figure 4 shows this linear fit. The linear fit coefficients were

f(x) = m*x + b
Coefficients (with 95% confidence bounds):
m = -0.004479 (-0.004525, -0.004434)
b = -0.02629 (-0.06156, 0.00898)

Goodness of fit:
SSE: 1.444
R-square: 0.9965
Adjusted R-square: 0.9965
RMSE: 0.1042

So lambda is 0.004479.

Lastly, we used our values of lambda to calculate the half-life

t1/2 =
ln(2)

λ
= τ ln(2)

Our calculated half-life values are given in the following results section.

4



Figure 4: A linear fit for our decay data

In order to calculate the error in our measurement, we had to find

∆y = ∆ ln

(
N(t)−B

N0

)
We let

z =
N(t)−B

N0

so we can calculate the error of y in terms of z.

y = ln(z)

∆y =
∂

∂z

(
ln(z)

)
∆z =

∆z

z

Define the numerator of z as
n = T (t)−B

and the denominator as
d = N(0).

We know from simple error propagation that

∆n =
√

∆T 2 + ∆B2

∆d =
√
N(0) (from Poisson statistics)

∆z

z
=

√(∆n

n

)2

+
(∆d

d

)2

So finally

∆z = z

√
∆T 2 + ∆B2

(T (t)−B)2
+

1

N(0)
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We estimated ∆T as the range of background radiation fluctuations, which was 25 counts per 10 seconds.
Our error in the average background was 1. Our error in N(0) is the same as the error of T(0). Using these
values we added error bars to figure 4, which can be seen in figure 5.

Figure 5: A linear fit for our decay data, ignoring the excluded values, with error bars

4 Results

Non-linear λ (1/s) 0.004519 ± 0.000011
Non-linear t1/2 (s) 153.35 ± 0.37

Linear λ (1/s) 0.004479 ± 0.000045
Linear t1/2 (s) 154.7 ± 1.55
Actual t1/2 (s) 153.12 ± 0.06

Table 1: Our calculated half-life results, compared with the accepted value

Table 1 shows our results. Our calculated values for the half life of excited Barium matches to within
1% of the accepted value. The accepted value lies within our error bounds for the non-linear trial, but it
is just outside of our error bound for the linear trial. This was likely caused by using only the background
radiation as a source of error while ignoring other sources like instrument accuracy and computer dead time.
Overall, our measurements matched the accepted values very well.
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5 Post-Questions

1. What is N(t) when t = τ ?

N(t) = N(0)e−t/τ

N(τ) = N(0)e−1

N(τ) = 0.37 N(0)

2. Explain why the observed t1/2, of the 662 keV gamma-rays from the Cs137 source is 33 years, even
though the γ-rays you are counting come from the decay of the Ba137, which has a t1/2, of only a few
minutes.

The half life of the gamma-rays represent the half-life of the entire decay process. Since Cesium-
137 does not emit gamma-rays on its own (it must decay into an excited Barium-137 first), and the
half life of Cs-137 is much greater than the half life of excited Ba-137, the emission of gamma rays
decay at a rate similar to the Cesium.

3. Is the time interval between when the source is eluted and when you begin your measurements critical?
Why or why not?

It is critical in the sense that as the Barium decays, the ratio of background noise in the data will be
greater. However, as long as this duration is not too long, the exponential decay will still be visible,
and all the parameters of interest can be calculated. The error will be just be higher.

4. What is dead-time? Is the computer channel dead-time of 1.8 µs significant?

Dead time is the shortest time that the computer can register two counts. To determine if this time is
significant, calculate the maximum average time in between counts for the data set:

Dwell Time

Counts
=

10s

14,411
= 6.9× 10−4 sec/event

which means that one gamma ray is counted every 300 times the dead time of 1.8µs. The dead time
is not significant.

5. In another experiment the following data set is obtained (shown on next page). When analyzed one
student group claims that a single exponential decay is adequate while another group states that to
fully explain this data a minimum of two decay constants are needed. Whose assertion do you support
and explain how you’ve arrived at this conclusion. It may help to include a figure or two of your
analysis. In both cases assume the background level is zero.

In order to answer this question, I plotted the decay process on a log plot. There is a clear linear
relationship in the first part of the graph, however this does not match the second part of the data (see
figure 6). From this, I conclude that there is a secondary process during the later half of the data (see
figure 7). Although weaker than the first process, it is clearly not background since it still has some
non-zero decay slope. Also, it can’t be related to first process since they have different slopes.

6 Conclusion

Poisson statistics is a useful and accurate method of analyzing sequences of unrelated events. In the limit as
the number of events gets large, a Poisson-statistics process approximates a Gaussian. In this experiments
we used two methods for calculating the half-life of an excited state of Barium-137: linear and non-linear
fits. Both methods resulted in a half life that was within 1% of the accepted values.
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Figure 6: A linear fit for process #1

Figure 7: A linear fit for process #2
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7 Appendix

200ms Trial

Channel Counts Poisson Uncertainty Counts minus mean Comparing uncertainties
3 166 12.9 -13.88 -1
11 205 14.3 25.12 -10.8
19 178 13.3 -1.88 11.5
128 179 13.4 -0.88 12.5
134 148 12.2 -31.88 -19.7
140 157 12.5 -22.88 -10.4
306 172 13.1 -7.88 5.2
382 167 12.9 -12.88 0
390 170 13 -9.88 3.2
424 193 13.9 13.12 0.8

800ms Trial

Channel Counts Poisson Uncertainty Counts minus mean Comparing uncertainties
3 731 27 12.7 14.3
4 734 27.1 15.7 11.4
26 713 26.7 -5.3 21.4
27 742 27.2 23.7 3.5
55 670 25.9 -48.3 -22.4
158 730 27 11.7 15.3
257 707 26.6 -11.3 15.3
341 695 26.4 -23.3 3.1
412 723 26.9 4.7 22.2
470 701 26.5 -17.3 9.2
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