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1 Purpose

To replicate Henry Cavendish’s measurement of Newton’s gravitational constant using the damped
harmonic oscillations of a torsion pendulum.

2 Theory

The universal gravitational constant G remains to this day one of the most difficult properties of our universe
to measure. Much of this is due to the fact that the gravitational force is so weak compared to the other
fundamental forces, and we are confined to Earth’s gravitational field, which can easily overpower any precise
measurements we attempt to make. In this experiment, we used a torsion pendulum, which is effectively
isolated from the effects of Earth’s gravity to measure the gravitational attraction between lead masses.

When the lead masses are moved near the pendulum, the gravitational force sets it into simple harmonic
motion. The wire supplies a restoring force, which is proportional to the torsion constant K. Based on the
frequency of oscillations, we can work out what the force is between the masses, and with it, the gravitational
constant. The gravitational force is

F = G
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r2

which results in a torque

τ = 2
GMm

d2
L

2
.

The gravitational torque defines a new equilibrium angle where the torque from gravity is equal to the
restoring torque from the torsion constant of the wire. Here θ0 denotes the equilibrium angle.
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Figure 1: The setup of the experiment

Source: https://nigerianscholars.com/tutorials/uniform-circular-motion-gravitation/the-cavendish-experiment-then-and-now/

3 Procedure

Figure 1 shows the experimental setup. Two small lead masses are suspended on a metal bar, which has a
mirror attached to the center. A laser is positioned so that it hits the center mirror and is reflected on to
opposite wall. We can then use the position of the reflected laser beam to determine the rotation angle θ of
the pendulum. We recorded the position of the laser once every thirty seconds. Since we expected one period
of oscillation to take approximately ten minutes, this would give us sufficient data points to determine the
frequency and other characteristics of the oscillations.

There are essentially only three values that we had to measure to determine the gravitational constant, ω0,
θ0, and M . L and d were unique to the pendulum we were using and were given in the lab description. In
order to determine ω0 and θ0, we had to complete two trials, one with the the masses positioned on each
side of the pendulum. We used Microsoft Excel for the initial data collection, but once we collected data
from 4-5 periods, we imported it into MatLab for processing.

Position data vs. time: Trial 1

Figure 2: The position curve fit for our first data trial.
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Position data vs. time: Trial 2

Figure 3: The position curve fit for our second data trial.

We used MatLab’s cftool in order to fit a curve to our data. Since the torsion pendulum behaves as a damped
harmonic oscillator, we used the equation x(t) = A(−bt) cos(ωt+ φ0) + x0 to fit the data appropriately. We
first fit a curve to our position data in order to determine the correct equilibrium position (x0) value. Figures
2 and 3 show this curve fit.

Once we determined the equilibrium value, we could convert all of our position data to displacement angle
using the sin relationship between displacement position and distance to the wall (D), which we measured
to be 3.49 ± 0.005 m. Note that here the 2θ is necessary because the angle is doubled due to the laser being
reflected.

sin(2θ) = 2θ =
x− x0
D

θ =
x− x0

2D

We then fit a curve to our angle data. The curve fit images and equation models are provided on the following
page. Cftool determined that the frequency of our first trial was ω0 = −0.6323 rad

s and the frequency of our

second trial was ω0 = −0.6362 rad
s .
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Angle data vs. time: Trial 1

Figure 4: The angle curve fit for our first data trial.

General model (trial 1):
f(x) = a*exp(-b*x)*cos(o*x+p)+c
R-square: 0.9936
Coefficients (with 95 confidence bounds):
a = 0.009691 (0.009387, 0.009995)
b = 0.04471 (0.0428, 0.04661)
c = 4.701e-06 (-5.536e-05, 6.476e-05)
o = -0.6323 (-0.6342, -0.6304)
p = -0.4898 (-0.5204, -0.4593)

Angle data vs. time: Trial 2

Figure 5: The angle curve fit for our second data trial.

General model (trial 2):
f(x) = a*exp(-b*x)*cos(o*x+p)+c
R-square: 0.9979
Coefficients (with 95 confidence bounds):
a = 0.01179 (0.0116, 0.01197)
b = 0.04676 (0.04552, 0.04799)
c = -3.982e-06 (-5.1e-05, 4.304e-05)
o = 0.6362 (0.6349, 0.6375)
p = 0.2543 (0.2381, 0.2704)
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4 Results

Trial 1 Trial 2

ω0( rad
s ) −0.6323 −0.6362

∆ω0( rad
s ) 0.013 0.013

θ0 (rad) 0.006246 -0.006246
∆θ0 (rad) 0.0000064 0.0000064
M (kg) 1.50318 1.50318

∆M (kg) 0.00007 0.00007

From our results, we calculated the gravitational constant using the derived formula (see ”theory” section).

Gtrial1 = 5.123 × 10−11 m3

kg s2

Gtrial2 = 5.188 × 10−11 m3

kg s2

The formula for G has an associated error propagation of
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We chose 5 mm as our value for ∆d since the lead masses were positioned by hand. Using the above
experimental uncertainties as well as the provided ∆L = 0.2 cm, our uncertainty in G was

∆G = 1.173 × 10−11 m3

kg s2

This puts the true value of G (6.674) just past the upper range of our uncertainty (6.296). This discrepancy
is likely due to our values for ω0 and d. Because the period of oscillations was so slow, it was difficult
to accurately determine the when the pendulum had completed a full oscillation. d was also difficult to
determine since we had to be cautious not to disturb the pendulum while positioning the masses.

5 Conclusion

The Cavendish experiment is a powerful method for determining the universal gravitational constant, isolated
from Earth’s gravity. We were able to determine the gravitational constant to within 23% of the currently
accepted value. As a part of this experiment, we analyzed the error in our value for G, and found that the
true value (6.674) existed just beyond the upper range of our uncertainty (6.296). A more accurate value
for G could likely be found by modifying how we determine the distance to the lead masses (d), which was
most likely our largest source of systematic error.
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