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1 Purpose

To test the Planck distribution law for electromagnetic energy of black body radiation and verify the
Stefan-Boltzmann Law of radiation power.

2 Theory

The Planck distribution law determines how much energy an ideal black body will radiate at a given tem-
perature and wavelength.

f(λ) dλ =
8πhcλ−5

exp
(

hc
λkBT

)
− 1

dλ

This relationship is based on the idea that atomic energy levels are quantized, so that a single atom can only
inhabit a few specific energy levels (and therefore can only emit photons of those energies). This quantum
model perfectly fits the behavior of black body radiation, which classical theories failed to explain. This
equation can be integrated to give the Stefan-Boltzmann law

PR/A = εσT 4

which determines the amount of power radiated by a black body at a given temperature. We will test aspects
of both of these models to verify their legitimacy.

3 Pre-questions

1. Using the Planck distribution law, Eq. (1), find the wavelength λ at which f(λ) is a maximum for any
temperature T . At T = 3000K, for what λ is f(λ) a maximum? Hint: When you differentiate f(λ) let
a = hc/kBT so that there are fewer terms to track. The result can be written as 5λ/a = 1−exp(−a/λ)
which must solved either graphically or by iteration. Suggestion: Try λ = a/5.
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f(λ) =
8πhcλ−5

exp
(
a
λ

)
− 1

d

dλ
f(λ) = 8πhc

(
− 5

λ−6

exp
(
a
λ

)
− 1

+
aλ−5 exp

(
a
λ

)
λ2(exp

(
a
λ
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λ
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(
a
λ
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5λ
(

exp
(a
λ

)
− 1
)

= a exp
(a
λ

)
5λ
(

1− exp

(
−a
λ

))
= a

5λ/a =
(

1− exp

(
−a
λ

))−1

Check: λ = a/5

5(
a

5
)/a =

(
1− exp (−5)

)−1

1 = (0.9933)−1

1 = 1.0067

λ = a/5 is good to around 3 significant figures, which is enough for this experiment. Therefore, the
maximum lambda is

λ = hc/5kBT =
2.88× 10−03

T

Which for T = 2000 K, λ = 1440 nm. The metal radiates mostly infrared light.

2. Write an expression that specifies εeff(T ) for Equation (6) in terms of ε(λ, T ) and a ratio of integrals
over all λ of f(λ)ε(λ, T ) in the numerator and f(λ) in the denominator. Note that ε(T ) like ε(λ, T )
must satisfy 0 ≤ ε(λ, T ) ≤ 1.

The energy per volume of a non-ideal black body is

f(λ)ε(λ, T )dλ

Since the power ratio is equivalent to the energy ratio, the ε value for equation 6 is just the actual
energy radiated divided by the ideal energy.

f(λ)ε(λ, T ) dλ

f(λ) dλ

εeff(T ) is just the average value of ε over all lambda, and we can integrate the terms separately to find
this.

εeff(T ) =

∫
f(λ)ε(λ, T ) dλ∫

f(λ) dλ
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3. Discuss the problem with the evaluation of ε′eff(T0) in Equation (7). Hint: emissivities are equilibrium
quantities and we are using them with a huge difference between T and T0.

Because the fillabment is so much hotter than the bulb, the temperature of the bulb T0 would be very
difficult to measure with this setup. Since εeff depends entirely on temperature, we have no way of
knowing what the true value is.

4. Is the T 4
0 term in Eq. (7) important at temperatures where the optical pyrometer can be used to

measure the temperature (T ≥ 800◦C)? You can assume that the bulb gets no hotter than 300◦C.

No, the T0 term does not affect the power radiated. Since the filament is around 2.5 times hotter than
the bulb, and the temperature is being raised to the fourth power, the filament contributes roughly
2.54, or 39 times as much power as the bulb can absorb.

4 Procedure

4.1 Test 1 - Stefan-Boltzmann Law

Figure 1: A schematic of the experiment

We split our procedure into two sections. During the first experiment, we wanted to test the T 4 relationship
of the Stefan-Boltzmann Law. To do this, we connected a tungsten filament lamp to a current-controlled
power supply, and measured the voltage across the lamp using a multimeter. From this we could use P = IV
to determine the power radiated from the filament. Then, we used an optical pyrometer to determine the
temperature of the filament. We took power and temperature data while adjusting the supplied current in
0.2 A increments from 2.6 to 6.2 A. Figure 1 shows the experimental setup.

Once we gathered our temperature and power data, we used matlab to analyze the relatonship. Since the
Stefan Boltzmann Law says the total power radiated per unit area is

PR/A = εeffσT
4
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We can test the exponent value by manipulating the equation with logarithms.

PR/εeff = AσTn

ln(PR/εeff) = ln(AσTn)

= ln(Aσ) + ln(Tn)

= ln(Aσ) + n ln(T )

In this way, we can test the T 4 exponent by plotting ln(PR/εeff) vs ln(T 4), and the slope of the graph will
give us experimental exponent value.

Lastly, we just had to compute the values of εeff for the different temperatures we measured. This accounts
for the fact that tungsten is not a perfect black body. We used the model (taken from the NIST datasheet)

εeff = −0.1073 + 2.528× 10−4 T − 3.518× 10−8 T 2

Results are given in the following section.

4.2 Test 2 - Planck distribution law

In our next experiment, we tested the photon flux predicted by the Planck distribution law. The photon
flux is dependent on the wavelength of light, so we tested three different wavelengths (red 610.4 nm, green
545.3 nm, and blue 436.5 nm) to see how well the model held. The setup was very similar to Test 1, but
this time we also used a monochrometer, notch filter, and a photomultiplier tube (PMT) to measure the
electromagnetic energy given off by the filament for a narrow band of wavelengths. We repeated the same
procedure, taking data from 2.6 A to 6.2 A, but this time we also measured current from the PMT.

Before we could process the data we had to account for the fact the the tungsten filament is not a perfect
black body. To fix this issue, we had to convert all of our temperature values using the equation

Ttrue =
hc/(kBλ0)

ln[εeff(exp(hc/[kBTobsλ0])− 1) + 1]

5 Results

5.1 Test 1 - Stefan-Boltzmann Law

Figures 2 shows our power vs. temperature data. We fit used a linear fit model only for the high temperature
data points, since this is the radiation region we are interested in. Below this region, the log plot deviates
from linear because thermal conductivity begins to overpower the radiation produced. We found the slope
of this line to be 3.67, which is 8.25% off of the 4.0 slope predicted by the Stefan-Boltzmann Law. The
uncertainties of both temperature and power were calculated using the below relationships and are shown
on the graph. Since we plotted the log of both functions, relative uncertainties were used and we used the
small error approximation of ∆ ln(f) ≈ 0.434∆f

f .

∆P

P
=

√(
∆I

I

)2

+

(
∆V

V

)2

with ∆I = ±0.05 A and ∆V = ±0.1 V .
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Figure 2: The log plot of Power vs. Temperature.

5.2 Test 2 - Planck distribution law

By plotting ln(i) vs 1
T , we can test the photon flux equation (derived from the Planck distribution law). We

expect the graph to have slope hc
λkB

. From this we can compare our experimental values to the model for
each wavelength we tested.

v(λ, T ) = b(λ)ε(λ, T )2πhc2λ−5 exp

(
− hc

λkBT

)
dλ

ln (v(λ, T )) = ln
(
b(λ)ε(λ, T )2πhc2λ−5dλ

)
− hc

λkBT

ln (i(λ, T )) = C − hc

λkB

1

T

Note that since i is proportional to v, the constant of proportionality get absorbed into the y-offset value
C, so we should get the same slope if we plot either v or i. Since we used the PMT, we were plotting the
current i. Figures 3 to 5 show our results, and the slope values are presented in the following table. Error
values were calculated for both 1/T and ln(Teff) and are shown on the graphs.

∆
1

T
= T | − 1|∆T

T
= ∆T

With ∆T = 10K and ∆I = 0.05(Ifullscale). Again, we used the small error approximation to graph our
uncertainties for ln(Teff).
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Figure 3: Inverse Temperature vs. Log(Current) for the 610.4 nm wavelength

Figure 4: Inverse Temperature vs. Log(Current) for the 545.3 nm wavelength
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Figure 5: Inverse Temperature vs. Log(Current) for the 436.5 nm wavelength
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Expected (×104) Measured (×104) Percent deviation
610.4 nm -2.357 -2.54 7.17%
545.3 nm -2.638 -2.98 13.0%
436.5 nm -3.296 -3.57 8.31%

Comparing our measured slopes with the expected values, we found the results to be fairly close. Interestingly,
our data fit the model perfectly (within 0.5%) when we didn’t use Ttrue, but after we accounted for the black
body variation, the data didn’t fit quite as well. Nevertheless, our data shows a strong dependence on the
wavelength, as predicted by the Planck distribution.

6 Conclusion

We were able to verify the Planck distribution law and Stefan Boltzmann law each to within approximately
9% of the values predicted by the model. The two models have proven to be very effective at describing
block body radiation. In our experiments, the largest source of error was likely the temperature reading
from the optical pyrometer. Since the color of the coil needs to be matched by hand, there is a large margin
for systematic error. Also, since our values for slope in experiment 2 matched perfectly without adjusting
for Ttrue, I’m skeptical that the adjusted temperature data is entirely correct. Future work could include
repeating the experiment with multiple people matching the coil to eliminate any systematic error from a
single person using the pyrometer.
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