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1 Purpose

To study how voltage and current affect Kα, Kβ , and bremsstrahlung radiation and to measure the lattice
spacing of four different crystals through X-ray diffraction.

2 Theory

In this experiment, the source of our X-rays is electron deceleration. A hot filament inside a vacuum tube
produces the electrons due to thermionic emission. The electrons are then accelerated from the cathode to
the anode under a very high (15-35 kV) voltage. The electrons hit a molybdenum barrier and they rapidly
decelerate, causing X-rays to be produced and radiate perpendicular to the electron velocity. Since the
energy of the X-rays depends on how quickly the electrons are decelerated, the energies are a continuous
spectrum. This radiation is called bremsstrahlung radiation.

In this experiment we also wanted to study the discrete X-ray emission lines caused by excited states of the
Molybdenum. When electrons of a specific energy collide with the molybdenum, they have the chance of
exciting valence electrons of the molybdenum to a higher energy state. When those electrons return to their
ground state, discrete energy x-rays are produced. The radiation associated with the n=2 to n=1 transition
is known as Kα and the energy associated with the n=3 to n=1 transition is known as Kβ . Since these
energy levels are quantized and fixed, the Kα and Kβ energies are discrete.

Bragg’s law determines how much light of a particular wavelength λ will scatter when it collides with a
crystal lattice.

nλ = 2d sin(θ)

where d is the distance between atomic layers and n is the order of diffraction. Diffraction order depends
on how many crystalline layers the incident radiation penetrates before scattering. The light that pene-
trates deeper will appear to be deflected more by the detector, so we should expect to see multiple peaks
corresponding to different diffraction orders of Kα and Kβ .

3 Procedure

In order to conduct our experiments, we used an X-ray diffractometer, which consisted of an X-ray source,
Sodium Chloride (NaCl) crystal target, and a detector. First, we varied the tube voltage from 15 to 35 kV
while holding the tube current at a constant 1mA. We swept the target angle from 2.5 to 10 degrees (0.1
degree increments) and measured how the Kα, Kβ , and bremsstrahlung radiation were affected.
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Next, we held the tube voltage constant and varied the tube current from 0.2 to 0.8 mA. We did the same
scans as the voltage trial to compare how different amounts of current affected the radiation.

Lastly, we wanted to compare the atomic lattice spacing for different crystals. In order to calculate this,
we had to capture multiple Bragg peaks, so this time we scanned the target from 2.5 to 25 degrees. We
ran the vacuum tube at 1mA @ 35kV, and repeated the experiment for the Lithium Fluoride (LiF), Sodium
Chloride (NaCl), Potassium Chloride (KCl) and Mica crystals.

4 Results

Figure 1: Count rate vs. target angle for our voltage-varying trials

Figure 2: Count rate vs. target angle for our current-varying trials

Figures 1 and 2 show our results from the voltage-varying and current-varying trials for NaCl. The Molyb-
denum Kα and Kβ peaks are clearly apparent in our count rate graphs. One interesting observation is that
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the bremsstrahlung radiation threshold varied for our voltage trials, but not for our current trials (more
discussion on this in post-question 1).

Crystal Kα Lattice spacing (Å) Kβ Lattice spacing (Å) Average Lattice spacing (Å) Error (Å)
LiF 2.02 2.01 2.02 2.25

NaCl 2.85 2.79 2.82 4.28
KCl 3.18 3.22 3.20 5.29
Mica 3.68 4.94 4.31 7.79

Table 1: Our calculated lattice spacing for each Kα and Kβ peak.

By plotting nλ/2 vs. sin(θ), we can use a linear fit in order to find the lattice spacing from the Bragg
relationship. See the appendix for images of our graphs and linear fit models. Table 1 shows our calculated
values for each crystal. The values do not match the accepted values, which are 4.63Å, 5.63Å, 6.29Å for
LiF, NaCl, and KCl respectively. However, they are correct to within an order of magnetide and the trend
of increasing lattice spacing can be clearly seen in our data.

For most of the calculated lattice spacings, we only had 2-3 data points, so d is simply the slope between
the endpoints. But ∆nλ/2 = 0, so the formula we used to calculate the error in our lattice spacing was

∆d = 2d
∆f

f

where f = sin(θ). But df
dθ = cos(θ) so ∆f = cos(θ)∆θ and

∆d = 2d
cos(θ)∆θ

sin(θ)

Crystal FWHM (Degrees)
NaCl (n=1) 0.9 ± 0.1
NaCl (n=2) 0.7 ± 0.1
Mica (n=1) 1.3 ± 0.1
Mica (n=2) 1.1 ± 0.1

Table 2: Rocking curve full width at half-maximum for NaCl and Mica crystals.

Lastly, we measured the rocking curves for both the LiF and Mica crystals. The rocking curves measure the
quality of the crystal by holding the detector still (centered at one of our Kα peaks) and varying the angle
of the crystal to determine how ”sharp” the peak is. A sharper peak corresponds to a higher quality crystal
since more of the lattice is aligned. The full width at half-maximum values are given in table 2. The angle
step for our trial was 0.1 degrees, so our error is 2*0.05, or 0.1 degrees.

From the rocking curves, we can tell that the NaCl is a slightly higher-quality crystal than the Mica we used.
Also, I found it interesting that the higher order Bragg peaks had a narrower rocking curve. I would have
expected that when the incident angle is steeper, crystal irregularities would have a larger impact, but this
does not seem to be the case.

5 Post-Questions

1. Question: Does the threshold for X-ray emission vary with tube voltage? tube current? What is the
functional relationship between the threshold wavelength (or energy) and tube voltage? Does you data
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support this assertion?

Figure 3: Threshold Energy vs. Voltage

Voltage (V) Threshold (keV)
35 36 ± 1
30 30.7 ± 1
25 25.2 ± 1

22.5 22.9 ± 1
20 20.4 ± 1
15 14.9 ± 1

Table 3: The threshold energies for our different voltage trials

The threshold energy is nearly identical to the tube voltage. This makes sense because the radiation
cutoff energy should be the same as the energy carried by the electrons. Our data shows that the
threshold energy varies linearly with voltage, and can be approximated with the following model:

f(x) = p1 x+ p2
Coefficients (with 95% confidence bounds):
p1 = 1.049 (1.02, 1.079)
p2 = -0.7788 (-1.521, -0.03616)

Goodness of fit:
SSE: 0.1129
R-square: 0.9996
Adjusted R-square: 0.9995
RMSE: 0.168

There was no variation in the threshold voltage for the different amounts of current.
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2. Question: How does the maximum intensity vary with voltage; with current? In principle the formula
is I = A(V −VT )αi. However the GM-tube (your X-ray detector) saturates at relatively modest counts
rates. A reasonable expression to model this is I = ic(1−∆tci) where c is the scaling factor and ∆t is
the dead time . Use your I vs. i measurement to correct for the detector deadtime and then identify
VT and the exponent. (You should assume the actual intensity is linear with tube current.)
1) Perform a linear least squares fit of I/i. The intercept is c and the slope is −c2∆t. Use the formula
I ′ = I/(1 − I∆t) to correct your data for dead-time.
2) Fit log I ′/i = logA + α log(V − VT ) to a line but adjust VT to get the best straight line (where I ′

is the corrected intensity).

Figure 4: I/i (Intensity over current) versus current (i)

Figure 5: Log I/i (Intensity over current) versus logA+ α log(V − VT )

Figure 4 shows our linear fit of I/i versus i. From out fit equation, we determined the scaling factor
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to be 2468, and the dead time to be 0.103 milliseconds. Figure 5 shows our corrected intensity values.
From the linear fit, we found the value for log(A) to be 6.881 and the value of α to be -0.005963. The
value of VT did not have a significant affect on our curve fit, so we chose VT = 0.

3. Question: Do the wavelengths of the characteristic radiation from molybdenum vary with voltage or
current? Find the characteristic energies. How do your results vary with the known values?

The characteristic wavelengths did not change for either voltage or current variations. Our mea-
sured values were 17.3keV for Kα and 19.7keV for Kβ , which are within 0.6% percent of their true
values of 17.4 keV and 19.6 keV respectively.

4. Question: If the NaCl crystal is misaligned how will this affect your results? Does anything in your
results suggests this effect?

If the crystal is misaligned, then the nλ/2 Bragg relationship will be offset by a constant. The calcu-
lated radiation energies will be slightly off, but the linear relationship between nλ/2 and the sine of the
angle will be reserved. Our offset constants were -2.40E-13, -1.77E-12, -2.60E-12, so our data is correct
to three significant figures ± 0.02Å. This is enough precision for our purposes, so we can consider the
crystal to be aligned.

6 Conclusion

The count rate for Kα and Kβ radiation varies with both tube voltage and tube current, but the energy
of the peaks are unaffected. The threshold radiation values for the bremsstrahlung depends only on tube
voltage, although the count rate depends on both tube voltage and current. Our calculated values for the
lattice spacing did not match the accepted values, likely due to the large error associated with only using
2-3 data points. If time allowed, I would have liked to repeat the scans for each crystal to verify the data
points and figure out what caused this discrepancy.
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7 Appendix

7.1 LiF

Figure 6: LiF nλ/2 vs. sin(θ) for Kα

Figure 7: LiF nλ/2 vs. sin(θ) for Kβ

Linear model for LiF Kα:
f(x) = p1*x + p2
Coefficients:
p1 = 2.018e-10
p2 = -2.402e-13
R-square: 1

Linear model for LiF Kβ :
f(x) = p1*x + p2
Coefficients:
p1 = 2.006e-10
p2 = -1.339e-13
R-square: 1
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7.2 NaCl

Figure 8: NaCl nλ/2 vs. sin(θ) for Kα

Figure 9: NaCl nλ/2 vs. sin(θ) for Kβ

Linear model for NaCl Kα:
f(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
p1 = 2.854e-10 (2.825e-10, 2.883e-10)
p2 = -1.766e-12 (-2.563e-12, -9.694e-13)
R-square: 1

Linear model for NaCl Kβ :
f(x) = p1*x + p2
Coefficients:
p1 = 2.786e-10
p2 = -4.245e-13
R-square: 1
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7.3 KCl

Figure 10: KCl nλ/2 vs. sin(θ) for Kα

Figure 11: KCl nλ/2 vs. sin(θ) for Kβ

Linear model for KCl Kα:
f(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
p1 = 3.175e-10 (3.073e-10, 3.278e-10)
p2 = -2.596e-12 (-5.167e-12, -2.456e-14)
R-square: 1

Linear model for KCl Kβ :
f(x) = p1*x + p2
Coefficients:
p1 = 3.218e-10
p2 = -3.152e-12
R-square: 1
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7.4 Mica

Figure 12: Mica nλ/2 vs. sin(θ) for Kα

Figure 13: Mica nλ/2 vs. sin(θ) for Kβ

Linear model for Mica Kα:
f(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
p1 = 3.681e-10 (2.46e-10, 4.902e-10)
p2 = 2.675e-13 (-3.193e-11, 3.246e-11)
R-square: 0.9882

Linear model for Mica Kβ :
f(x) = p1*x + p2
Coefficients:
p1 = 4.935e-10
p2 = -1.57e-11
R-square: 1
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