
Homework 02

Due at the date and time indicated in Canvas. Please turn in this assignment

into the 323 mailbox, which is located just outside room 2103 Chamberlin Hall.

1. (20 points) Problem 9.2

2. (20 points) Problem 9.8

3. (20 points) Problem 9.35

4. (20 points) Problem 9.36
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9.1 Waves in One Dimension 385 

(Notice that the wave equation is linear: The sum of any two solutions is itself a 
solution.) Every solution to the wave equation can be expressed in this form. 

Like the simple harmonic oscillator equation, the wave equation is ubiquitous 
in physics. If something is vibrating, the oscillator equation is almost certainly 
responsible (at least, for small amplitudes), and if something is waving (whether 
the context is mechanics or acoustics, optics or oceanography), the wave equation 
(perhaps with some decoration) is bound to be involved. 

Problem 9.1 By explicit differentiation, check that the functions /1, fz, and /3 in 
the text satisfy the wave equation. Show that f 4 and f 5 do not. 

Problem 9.2 Show that the standing wave f(z, t) = A sin(kz) cos(kvt) satisfies 
the wave equation, and express it as the sum of a wave traveling to the left and a 
wave traveling to the right (Eq. 9.6). 

9.1.2 • Sinusoidal Waves 

(i) Terminology. Of all possible wave forms, the sinusoidal one 

f (z, t) = A cos[k(z - vt) + 8] (9.7) 

is (for good reason) the most familiar. Figure 9.3 shows this function at time t = 0. 
A is the amplitude of the wave (it is positive, and represents the maximum dis-
placement from equilibrium). The argument of the cosine is called the phase, and 
8 is the phase constant (obviously, you can add any integer multiple of 2n to 8 
without changing f(z, t); ordinarily, one uses a value in the range 0 8 < 2n). 
Notice that at z = vt- 8/ k, the phase is zero; let's call this the "central maxi-
mum." If 8 = 0, the central maximum passes the origin at time t = 0; more gen-
erally, 8/ k is the distance by which the central maximum (and therefore the entire 
wave) is "delayed." Finally, k is the wave number; it is related to the wavelength 
). by the equation 

2n 
).= k' 

for when z advances by 2n f k, the cosine executes one complete cycle. 
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9.2 Electromagnetic Waves in Vacuum 393 

In terms of the polarization angle 0, 

ii = cos 0 i + sin 0 y. (9.38) 

Thus, the wave pictured in Fig. 9.8c can be considered a superposition of two 
waves-one horizontally polarized, the other vertically: 

f(z, t) = (A cos O)ei(kz-wt) i +(A sinO)ei(kz-wt) y. (9.39) 

Problem 9.8 Equation 9.36 describes the most general linearly polarized wave on 
a string. Linear (or "plane") polarization (so called because the displacement is par-
allel to a fixed vector n) results from the combination of horizontally and vertically 
polarized waves of the same phase (Eq. 9.39). If the two components are of equal 
amplitude, but out of phase by 90° (say, 8v = 0, 8h = 90°), the result is a circularly 
polarized wave. In that case: 

(a) At a fixed point z, show that the string moves in a circle about the z axis. Does it 
go clockwise or counterclockwise, as you look down the axis toward the origin? 
How would you construct a wave circling the other way? (In optics, the clock-
wise case is called right circular polarization, and the counterclockwise, left 
circular polarization.)3 

(b) Sketch the string at time t = 0. 

(c) How would you shake the string in order to produce a circularly polarized wave? 

9.2 • ELECTROMAGNETIC WAVES IN VACUUM 

9.2.1 • The Wave Equation for E and B 

In regions of space where there is no charge or current, Maxwell's equations read 

(i) (iii) 
aB 

V·E=O, V xE=--
at' 

(9.40) 

(ii) (iv) OE I V ·B=O, V x B = f.LoEo - . 
at 

They constitute a set of coupled, first-order, partial differential equations for E 
and B. They can be decoupled by applying the curl to (iii) and (iv): 

V x (V x E) = V (V · E) - V 2E = V x (-

a a2E 
= -at (V X B) = -JLoEo at2 ' 

3 An elegant notation for circular polarization (or elliptical, if the amplitudes are unequal) is to use a 
complex ii, but I shall not do so in this book. 





432 Chapter 9 Electromagnetic Waves 

Problem 9.32 

(a) Show directly that Eqs. 9.197 satisfy Maxwell's equations (Eq. 9.177) and the 
boundary conditions (Eq. 9.175). 

(b) Find the charge density, A.(z, t), and the current, I(z, t), on the inner conductor. 

More Problems on Chapter 9 

Problem 9.33 The "inversion theorem" for Fourier transforms states that 

¢Cz) = /_: ci'>(k)eikz dk {::::::::} ci'>(k) = foo ¢Cz)e-ikz dz. 
2rr _00 

Use this to determine A(k), in Eq. 9.20, in terms of f(z, 0) and j(z, 0). 
[Answer: (1/2rr) 0) + (ijw)j(z, O)]e-ikz dz] 

(9.198) 

Problem 9.34 [The naive explanation for the pressure of light offered in Section 
9.2.3 has its flaws, as you discovered if you worked Problem 9.11. Here's another 
account, due originally to Planck.25] A plane wave traveling through vacuum in the 
z direction encounters a perfect conductor occupying the region z 0, and reflects 
back: 

E(z, t) = Eo [cos(kz - wt) - cos(kz + wt)] i, (z < 0). 

(a) Find the accompanying magnetic field (in the region z < 0). 

(b) Assuming B = 0 inside the conductor, find the current K on the surface z = 0, 
by invoking the appropriate boundary condition. 

(c) Find the magnetic force per unit area on the surface, and compare its time aver-
age with the expected radiation pressure (Eq. 9.64). 

Problem 9.35 Suppose 

sine A • w 
E(r, e, </J, t) = A - r- [cos (kr- wt)- (1/kr) sin (kr- wt)] l/J, Wlth k =c. 

(This is, incidentally, the simplest possible spherical wave. For notational conve-
nience, let (kr - wt) = u in your calculations.) 

(a) Show that E obeys all four of Maxwell's equations, in vacuum, and find the 
associated magnetic field. 

(b) Calculate the Poynting vector. AverageS over a full cycle to get the intensity 
vector I. (Does it point in the expected direction? Does it fall off like r-2 , as it 
should?) 

(c) Integrate I· da over a spherical surface to determine the total power radiated. 
[Answer: 4rr A2 f3J-Loc] 

25 T. Rothman and S. Boughn, Am. J. Phys. 77, 122 (2009), Section N. 







9.5 Guided Waves 433 

Problem 9.36 Light of (angular) frequency w passes from medium 1, through a slab 
(thickness d) of medium 2, and into medium 3 (for instance, from water through 
glass into air, as in Fig. 9.27). Show that the transmission coefficient for normal 
incidence is given by 

(9.199) 

[Hint: To the left, there is an incident wave and a reflected wave; to the right, there 
is a transmitted wave; inside the slab, there is a wave going to the right and a wave 
going to the left. Express each of these in terms of its complex amplitude, and relate 
the amplitudes by imposing suitable boundary conditions at the two interfaces. All 
three media are linear and homogeneous; assume f.Lt = f.L2 = f.L3 = f.Lo.] 

Problem 9.37 A microwave antenna radiating at 10 GHz is to be protected from 
the environment by a plastic shield of dielectric constant 2.5. What is the minimum 
thickness of this shielding that will allow perfect transmission (assuming normal 
incidence)? [Hint: Use Eq. 9.199.] 
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Problem 9.38 Light from an aquarium (Fig. 9.27) goes from water (n = 
a plane of glass (n = air (n = 1). Assuming it's a monochromatic plane wave 
and that it strikes the glass at normal incidence, find the minimum and maximum 
transmission coefficients (Eq. 9.199). You can see the fish clearly; how well can it 
see you? 

Problem 9.39 According to Snell's law, when light passes from an optically dense 
medium into a less dense one (nt > n2) the propagation vector k bends away from 
the normal (Fig. 9.28). In particular, if the light is incident at the critical angle 

(9.200) 

then Or = 90°, and the transmitted ray just grazes the surface. If 01 exceeds Oc, 
there is no refracted ray at all, only a reflected one (this is the phenomenon of total 
internal reflection, on which light pipes and fiber optics are based). But the fields 






