
Homework 04

Due at the date and time indicated in Canvas. Please turn in this assignment

into the 323 mailbox, which is located just outside room 2103 Chamberlin Hall.

1. (20 points) Problem 10.2

2. (20 points) Problem 10.7 (Hint: you may need Eqn. 1.99)

3. (20 points) Problem 10.12

4. (20 points) Problem 10.15
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1 0.1 The Potential Formulation 

In terms of V and A, then, 

a A 
E=-VV- - . 

at 

This reduces to the old form, of course, when A is constant. 
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(10.3) 

The potential representation (Eqs. 10.2 and 10.3) automatically fulfills the two 
homogeneous Maxwell equations, (ii) and (iii). How about Gauss's law (i) and 
the Ampere/Maxwell law (iv)? Putting Eq. 10.3 into (i), we find that 

2 a 1 
V V + - (V ·A)= - - p; 

at Eo 
(10.4) 

this replaces Poisson's equation (to which it reduces in the static case). Putting 
Eqs. 10.2 and 10.3 into (iv) yields 

(av) a2A V x (V x A)= JLoJ- J.LoEoV - - J.LoEo - 2 , at at 
or, using the vector identity V x (V x A) = V (V · A) - V2 A, and rearranging 
the terms a bit: 

( 
2 a2A) ( av) v A- J.LoEo at2 - v v. A+ JLoEoat = -JJ.,oJ. (10.5) 

Equations 10.4 and 10.5 contain all the information in Maxwell's equations. 

Example 10.1. Find the charge and current distributions that would give rise to 
the potentials 

I J.Lok 2 A 

A _ - (ct- lxl) z, for lxl < ct, V = 0, - 4c 
0, for lxl > ct, 

where k is a constant, and (of course) c = 1 

-ct ct 

_ ).!Qkct 
2 

X 

FIGURE 10.1 
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Solution 
First we'll determine the electric and magnetic fields, using Eqs. 10.2 and 10.3: 

aA J-Lok A 

E =-at= -2(ct- lxl) z, 

J-Lok a 2 A J-Lok A B = V x A= - --(ct- lxl) y = ± - (ct- lxl) y, 
4c ax 2c 

(plus, for x > 0; minus, for x < 0). These are for lxl < ct; when lxl > ct, 
E = B = 0 (Fig. 10.1). Calculating every derivative in sight, I find 

v E 0 v B 0 v X E = :r-J-LokyA· v X B =- J-Lok z· · =; · =; '2' 2c' 

aE J-Lokc A - =--- z· at 2 ' 
aB J-Lok A - =±- y. at 2 

As you can easily check, Maxwell's equations are all satisfied, with p and J 
both zero. Notice, however, that B has a discontinuity at x = 0, and this signals 
the presence of a surface current K in the yz plane; boundary condition (iv) in 
Eq. 7.64 gives 

kty = K Xi, 
and hence 

K = kt Z. 
Evidently we have here a uniform surface current flowing in the z direction over 
the plane x = 0, which starts up at t = 0, and increases in proportion to t. No-
tice that the news travels out (in both directions) at the speed of light: for points 
lx I > ct the message ("current is now flowing") has not yet arrived, so the fields 
are zero. 

Problem 10.1 Show that the differential equations for V and A (Eqs. 10.4 and 10.5) 
can be written in the more symmetrical form 

where 

2 aL 1 } D V+ - =- - p, 
at Eo 

D2A- VL = -tLoJ, 

2 2 a2 D =V -P,oEo -at2 
av 

and L = V ·A+ f.LoEo - . at 

(10.6) 

Problem 10.2 For the configuration in Ex. 10.1, consider a rectangular box of length 
l, width w, and height h, situated a distanced above the yz plane (Fig. 10.2). 
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J--=-- l---=--1. 
W I h 
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I 
I 
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y 

FIGURE 10.2 

(a) Find the energy in the box at time t1 = djc, and at t2 = (d + h)jc. 

(b) Find the Poynting vector, and determine the energy per unit time flowing into 
the box during the interval t1 < t < t2. 

(c) Integrate the result in (b) from t1 to t2 , and confirm that the increase in energy 
(part (a)) equals the net influx. 

1 0.1.2 • Gauge Transformations 

Equations 10.4 and 10.5 are ugly, and you might be inclined to abandon the 
potential formulation altogether. However, we have succeeded in reducing six 
problems-finding E and B (three components each)-down to four: V (one com-
ponent) and A (three more). Moreover, Eqs. 10.2 and 10.3 do not uniquely define 
the potentials; we are free to impose extra conditions on V and A, as long as 
nothing happens to E and B. Let's work out precisely what this gauge freedom 
entails. 

Suppose we have two sets of potentials, (V, A) and (V', A'), which correspond 
to the same electric and magnetic fields. By how much can they differ? Write 

A'= A+ a and V' = V + {3. 

Since the two A's give the same B, their curls must be equal, and hence 

V x a= 0. 

We can therefore write a as the gradient of some scalar: 

a= VA.. 

The two potentials also give the same E, so 

a a 
V{J+ - =0 at ' 
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(called the d' Alembertian) occurs in both equations: 

(i) 2 1 D V = - - p, 
Eo (10.16) 

This democratic treatment of V and A is especially nice in the context of special 
relativity, where the d' Alembertian is the natural generalization of the Laplacian, 
and Eqs. 10.16 can be regarded as four-dimensional versions of Poisson's equa-
tion. In this same spirit, the wave equation 0 2 f = 0, might be regarded as the 
four-dimensional version of Laplace's equation. In the Lorenz gauge, V and A 
satisfy the inhomogeneous wave equation, with a "source" term (in place of 
zero) on the right. From now on, I shall use the Lorenz gauge exclusively, and the 
whole of electrodynamics reduces to the problem of solving the inhomogeneous 
wave equation for a specified source. 

Problem 10.5 Which of the potentials in Ex. 10.1, Prob. 10.3, and Prob. 10.4 are in 
the Coulomb gauge? Which are in the Lorenz gauge? (Notice that these gauges are 
not mutually exclusive.) 

Problem 10.6 In Chapter 5, I showed that it is always possible to pick a vector 
potential whose divergence is zero (the Coulomb gauge). Show that it is always 
possible to choose V ·A= -JLoEo(8V j8t), as required for the Lorenz gauge, as-
suming you know how to solve the inhomogeneous wave equation (Eq. 10.16). Is it 
always possible to pick V = 0? How about A = 0? 

Problem 10.7 A time-dependentpointchargeq(t) at the origin, p(r, t) = q(t)o3 (r), 
is fed by a current J(r, t) = -(1/4:7l')(q jr2) r, where q = dq jdt. 

(a) Check that charge is conserved, by confirming that the continuity equation is 
obeyed. 

(b) Find the scalar and vector potentials in the Coulomb gauge. If you get stuck, try 
working on (c) first. 

(c) Find the fields, and check that they satisfy all of Maxwell's equations.3 

1 0.1.4 • Lorentz Force Law in Potential Form4 

It is illuminating to express the Lorentz force law in terms of potentials: 

dp [ aA J F = - = q(E + v X B)= q -VV- - + v X (V X A) ' 
dt at 

(10.17) 

3p. R. Berman, Am. J. Phys. 76 48 (2008). 
4This section can be skipped without loss of continuity. 
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The electric field is a A 
E(s,t) = - - = 

at 
f.Loloc A 

2n../(ct)2- s2 
z, 

and the magnetic field is 
a Az A JLolo ct A 

B(s,t)=VxA=- - l/1= q,. 
as 2ns ..j(ct)2- s2 

Notice that as t--+ oo we recover the static case: E = 0, B = (JLolof2ns) 

Problem 10.10 Confirm that the retarded potentials satisfy the Lorenz gauge con-
dition. [Hint: First show that 

(J) 1 1 1 1 (J) V · :; = :; (V · J) + :; (V · J) - V · :; , 

where V denotes derivatives with respect tor, and V1 denotes derivatives with re-
spect to r 1

• Next, noting that J(r1
, t -'l-jc) depends on r' both explicitly and through 

'l-, whereas it depends on r only through 'l-, confirm that 
1 • I • 1 • I V · J = - - J · (V'l-), V · J = -p- - J · (V 'l-). 
c c 

Use this to calculate the divergence of A (Eq. 10.26).] 

Problem 10.11 

(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current 

/(t) = kt, 

for t > 0. Find the electric and magnetic fields generated. 

(b) Do the same for the case of a sudden burst of current: 

I(t) = qoo(t). 

y 

X 

FIGURE 10.5 

Problem 10.12 A piece of wire bent into a loop, as shown in Fig. 10.5, carries a 
current that increases linearly with time: 

/(t) = kt (-oo < t < oo). 

Calculate the retarded vector potential A at the center. Find the electric field at 
the center. Why does this (neutral) wire produce an electric field? (Why can't you 
determine the magnetic field from this expression for A?) 
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or, squaring: 

r 2 - 2r · vtr + v2ij: = c2(t2 - 2ttr + ij:). 
Solving for tr by the quadratic formula, I find that 

(c2t - r · v) ± J (c2t - r · v)2 + (c2 - v2)(r2 - c2t2) 
tr = 2 2 ' c - v 

(10.48) 

To fix the sign, consider the limit v = 0: 
r 

tr = t ± - . 
c 

In this case the charge is at rest at the origin, and the retarded time should be 
(t - r f c); evidently we want the minus sign. 

so 

Now, from Eqs. 10.44 and 10.45, 

'1- = c(t- tr), and " r- Vtr 
.t.= ' c(t- tr) 

" [ v (r - vtr)] v · r v2 
'1-(1-.t.·vfc)=c(t-tr) 1- - · =c(t-tr)- - + - tr 

c c(t - tr) c c 

1[ 2 2 2 ] = -;; (c t - r · v) - (c - v )tr 

1 
= -J (c2t - r · v)2 + (c2 - v2)(r2 - c2t2) 

c 

(I used Eq. 10.48, with the minus sign, in the last step). Therefore, 

1 qc 
V(r, t) = , 

4Juo J(c2t- r. v)2 + (c2- v2)(r2- c2t2) 
(10.49) 

and (Eq. 10.47) 

A( ) _ J-to qcv r, t -
4n J (c2t - r. v)2 + (c2 - v2)(r2 - c2t2) 

(10.50) 

Problem 10.15 A particle of charge q moves in a circle of radius a at constant 
angular velocity w. (Assume that the circle lies in the xy plane, centered at the 
origin, and at time t = 0 the charge is at (a, 0), on the positive x axis.) Find the 
Lienard-Wiechert potentials for points on the z axis. 

• Problem 10.16 Show that the scalar potential of a point charge moving with con-
stant velocity (Eq. 10.49) can be written more simply as 

(10.51) 




