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1. Coupled spins. Spin-1/2 particles A and B evolve under the influence of the following Hamiltonian (for
simplicity take h̄ = 1 so that energies are expressed in frequency units):

H = −∆sAz −∆sBz + 4g sA · sB

We work in the uncoupled basis |ab〉 ≡ |a〉 ⊗ |b〉, where a, b ∈ 0, 1 and where states |0〉 (|1〉) correspond
to single spins aligned (antialigned) with the z-direction. As we discussed in lecture, the eigenstates of the
Hamiltonian are |00〉, |11〉, and 2−1/2(|01〉 ± |10〉).

(a) We prepare the initial state |ψ(t = 0)〉 = |01〉. Since this state is not an eigenstate of the Hamiltonian,
it will evolve in time. Write down the Hamiltonian matrix for this system in the subspace spanned by
the states |01〉 and |10〉. Calculate the time evolved state |ψ(t)〉.

(b) Calculate the 4 × 4 density matrix ρ̂(t) corresponding to the state you found in part (a).

(c) Trace over the degrees of freedom of spin B to calculate the reduced density matrix describing spin A:
ρ̂A = TrB(ρ̂).

(d) Calculate the three components of the Bloch vector PA corresponding to ρ̂ as a function of time. Again,
the Bloch vector of an ensemble is defined from the following equation:

ρ̂ =
1

2
(1 + P · σσσ)

where σσσ are the usual Pauli matrices.

Solution:

(a) Taking the Hamiltonian H = −∆sAz −∆sBz + 4g sA · sB, we can rewrite this in matrix form.

Ĥ =


−∆ + 2g 0 0 0

0 0 2g 0
0 2g 0 0
0 0 0 ∆ + 2g


Where the rows and columns correspond (from top to bottom and left to right respectively) to the
basis states |00〉 , |01〉 , |10〉 , |11〉. The hamiltonian for the subspace spanned by |01〉 , |10〉 is then

Ĥ =

(
0 2g
2g 0

)
Our unitary operator is
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U = e−iĤt

= e−i2gtσx

= cos (2gt)1− i sin (2gt)σx

=

(
c −is
−is c

)
In the basis |01〉 , |10〉, our initial state |01〉 becomes

|01〉 −→
(

1
0

)
So then

|ψ(t)〉 = Uψ

=

(
c −is
−is c

)(
1
0

)
=

(
c
−is

)
=

(
cos (2gt)
−i sin (2gt)

)
Which in the original basis is

|ψ(t)〉 =


0

cos (2gt)
−i sin (2gt)

0


(b) We can compute the density matrix from its definition.

ρ̂ = |ψ〉 〈ψ| =


0 0 0 0
0 c2 cs 0
0 −cs s2 0
0 0 0 0


As a check, notice that Tr(ρ2) = 1.

√

(c) Reducing the density matrix to only describe spin A, we get

ρ̂A = TrB(ρ̂) =

(
c2 0
0 s2

)
=

(
cos2 (2gt) 0

0 sin2 (2gt)

)
(d) We take the definition of the Bloch vector and set it equal to the density matrix from part c.

(
c2 0
0 s2

)
= ρ̂ =

1

2
(1 + P · σσσ)

=
1

2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)

2



This is just a system of three equations that we must solve.

Px + iPy = 0

Px − iPy = 0

Pz = 2 cos2(2gt)− 1

Px = 0

Px = 0

Pz = 2 cos2(2gt)− 1

We can check that 1− Pz = 2− cos2(2gt) = 2 sin2(2gt).
√

So therefore

~P = (0, 0, 2 cos2(2gt)− 1)

(e)

2. Consider a system consisting of two spin-1/2 particles (a.k.a. “qubits”). For this problem I’ll use the
compact notation X ≡ σx, Z ≡ σz, XX ≡ σx ⊗ σx, and ZZ ≡ σz ⊗ σz.

(a) Construct the 4× 4 matrices representing XX and ZZ in the basis spanned by the states |00〉 , |01〉 , and |11〉.

(b) Evaluate the commutator [XX,ZZ].

(c) Consider the following Bell states, which are maximally entangled two qubit states:

|Φ±〉 =
1√
2

(|00〉 ± |11〉),

|Ψ±〉 =
1√
2

(|01〉 ± |10〉),

Show that these states are simultaneous eigenstates of the operators XX and ZZ. For each of the four
Bell states, determine the eigenvalues of XX and ZZ.

Solution:

(a) We have the matrices

XX = σx ⊗ σx =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



ZZ = σz ⊗ σz =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


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(b) The commutator [XX, ZZ] then becomes

[XX,ZZ] = XX ZZ − ZZ XX

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

−


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


[XX,ZZ] = 0~

~

(c) The eigenstates of the XX and ZZ matrices are

XX |Φ+〉 =
1√
2
XX


1
0
0
1

 =
1√
2


1
0
0
1

 √

XX |Φ−〉 =
1√
2
XX


1
0
0
−1

 =
1√
2


−1
0
0
1

 √

XX |Ψ+〉 =
1√
2
XX


0
1
1
0

 =
1√
2


0
1
1
0

 √

XX |Ψ−〉 =
1√
2
XX


0
1
−1
0

 =
1√
2


0
−1
1
0

 √

ZZ |Φ+〉 =
1√
2
ZZ


1
0
0
1

 =
1√
2


1
0
0
1

 √

ZZ |Φ−〉 =
1√
2
ZZ


1
0
0
−1

 =
1√
2


1
0
0
−1

 √

ZZ |Ψ+〉 =
1√
2
ZZ


0
1
1
0

 =
1√
2


0
−1
−1
0

 √

ZZ |Ψ−〉 =
1√
2
ZZ


0
1
−1
0

 =
1√
2


0
−1
1
0

 √

which correspond to the XX eigenvalues λΦ+
, λΨ+

= 1, λΦ− , λΨ− = −1 and ZZ eigenvalues of λΦ+
, λΦ− =

1, λΨ+
, λΨ− = −1

(d) If we prepare the state

|Φ+〉 =
1√
2

(|00〉+ |11〉),
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the only possible outcomes of XX are its eigenvalues of ±1. If XX changes from 1 to -1, we know that
we are either in the state

|Φ−〉 =
1√
2

(|00〉 − |11〉)

or

|Ψ−〉 =
1√
2

(|01〉 − |10〉)

In the |Φ−〉 case, there is no bit flip, but there is a phase flip. In the |Ψ−〉 case, there is a bit flip on B
and a phase flip.

So, we know that there was a phase flip and bit bit flip on A, but we aren’t sure if there was a bit flip on B.

(e) If ZZ goes tom 1 to -1, the possible states are

|Φ+〉 =
1√
2

(|00〉+ |11〉)

and

|Ψ−〉 =
1√
2

(|01〉 − |10〉)

this tells us that qubit B had a bit flip and A did not, but we’re unsure whether a phase flip occurred.
However, the qubits are indistinguishable,

so the most that we can conclude is that a bit flip occurred on one of the bits.
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