Physics 531 Homework 10

Luis Guzman

Wednesday, April 172019

1. Coupled spins. Spin- $1 / 2$ particles A and B evolve under the influence of the following Hamiltonian (for simplicity take $\hbar=1$ so that energies are expressed in frequency units):

$$
H=-\Delta s_{z}^{A}-\Delta s_{z}^{B}+4 g \mathbf{s}^{\mathbf{A}} \cdot \mathbf{s}^{\mathbf{B}}
$$

We work in the uncoupled basis $|a b\rangle \equiv|a\rangle \otimes|b\rangle$, where $a, b \in 0,1$ and where states $|0\rangle(|1\rangle)$ correspond to single spins aligned (antialigned) with the z-direction. As we discussed in lecture, the eigenstates of the Hamiltonian are $|00\rangle,|11\rangle$, and $2^{-1 / 2}(|01\rangle \pm|10\rangle)$.
(a) We prepare the initial state $|\psi(t=0)\rangle=|01\rangle$. Since this state is not an eigenstate of the Hamiltonian, it will evolve in time. Write down the Hamiltonian matrix for this system in the subspace spanned by the states $|01\rangle$ and $|10\rangle$. Calculate the time evolved state $|\psi(t)\rangle$.
(b) Calculate the 4×4 density matrix $\hat{\rho}(t)$ corresponding to the state you found in part (a).
(c) Trace over the degrees of freedom of spin B to calculate the reduced density matrix describing spin A: $\hat{\rho}_{A}=\operatorname{Tr}_{B}(\hat{\rho})$.
(d) Calculate the three components of the Bloch vector $\mathbf{P}_{\mathbf{A}}$ corresponding to $\hat{\rho}$ as a function of time. Again, the Bloch vector of an ensemble is defined from the following equation:

$$
\hat{\rho}=\frac{1}{2}(\mathbb{1}+\mathbf{P} \cdot \boldsymbol{\sigma})
$$

where $\boldsymbol{\sigma}$ are the usual Pauli matrices.

Solution:
(a) Taking the Hamiltonian $H=-\Delta s_{z}^{A}-\Delta s_{z}^{B}+4 g \mathbf{s}^{\mathbf{A}} \cdot \mathbf{s}^{\mathbf{B}}$, we can rewrite this in matrix form.

$$
\hat{H}=\left(\begin{array}{cccc}
-\Delta+2 g & 0 & 0 & 0 \\
0 & 0 & 2 g & 0 \\
0 & 2 g & 0 & 0 \\
0 & 0 & 0 & \Delta+2 g
\end{array}\right)
$$

Where the rows and columns correspond (from top to bottom and left to right respectively) to the basis states $|00\rangle,|01\rangle,|10\rangle,|11\rangle$. The hamiltonian for the subspace spanned by $|01\rangle,|10\rangle$ is then

$$
\hat{H}=\left(\begin{array}{cc}
0 & 2 g \\
2 g & 0
\end{array}\right)
$$

Our unitary operator is

$$
\begin{aligned}
U & =e^{-i \hat{H} t} \\
& =e^{-i 2 g t \sigma_{x}} \\
& =\cos (2 g t) \mathbb{1}-i \sin (2 g t) \sigma_{x} \\
& =\left(\begin{array}{cc}
c & -i s \\
-i s & c
\end{array}\right)
\end{aligned}
$$

In the basis $|01\rangle,|10\rangle$, our initial state $|01\rangle$ becomes

$$
|01\rangle \rightarrow\binom{1}{0}
$$

So then

$$
\begin{aligned}
|\psi(t)\rangle & =U \psi \\
& =\left(\begin{array}{cc}
c & -i s \\
-i s & c
\end{array}\right)\binom{1}{0} \\
& =\binom{c}{-i s} \\
& =\binom{\cos (2 g t)}{-i \sin (2 g t)}
\end{aligned}
$$

Which in the original basis is

$$
|\psi(t)\rangle=\left(\begin{array}{c}
0 \\
\cos (2 g t) \\
-i \sin (2 g t) \\
0
\end{array}\right)
$$

(b) We can compute the density matrix from its definition.

$$
\hat{\rho}=|\psi\rangle\langle\psi|=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & c^{2} & c s & 0 \\
0 & -c s & s^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

As a check, notice that $\operatorname{Tr}\left(\rho^{2}\right)=1$. $\sqrt{ }$
(c) Reducing the density matrix to only describe spin A, we get

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B}(\hat{\rho})=\left(\begin{array}{cc}
c^{2} & 0 \\
0 & s^{2}
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2}(2 g t) & 0 \\
0 & \sin ^{2}(2 g t)
\end{array}\right)
$$

(d) We take the definition of the Bloch vector and set it equal to the density matrix from part c.

$$
\begin{aligned}
\left(\begin{array}{cc}
c^{2} & 0 \\
0 & s^{2}
\end{array}\right)=\hat{\rho} & =\frac{1}{2}(\mathbb{1}+\mathbf{P} \cdot \boldsymbol{\sigma}) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & 1-P_{z}
\end{array}\right)
\end{aligned}
$$

This is just a system of three equations that we must solve.

$$
\begin{aligned}
P_{x}+i P_{y} & =0 \\
P_{x}-i P y & =0 \\
P_{z}=2 \cos ^{2}(2 g t) & -1 \\
P_{x} & =0 \\
P_{x} & =0 \\
P_{z}=2 \cos ^{2}(2 g t) & -1
\end{aligned}
$$

We can check that $1-P_{z}=2-\cos ^{2}(2 g t)=2 \sin ^{2}(2 g t) . \quad \sqrt{ }$
So therefore

$$
\vec{P}=\left(0,0,2 \cos ^{2}(2 g t)-1\right)
$$

(e)
2. Consider a system consisting of two spin-1/2 particles (a.k.a. "qubits"). For this problem I'll use the compact notation $X \equiv \sigma_{x}, Z \equiv \sigma_{z}, X X \equiv \sigma_{x} \otimes \sigma_{x}$, and $Z Z \equiv \sigma_{z} \otimes \sigma_{z}$.
(a) Construct the 4×4 matrices representing XX and ZZ in the basis spanned by the states $|00\rangle,|01\rangle$, and $|11\rangle$.
(b) Evaluate the commutator $[X X, Z Z]$.
(c) Consider the following Bell states, which are maximally entangled two qubit states:

$$
\begin{aligned}
& \left|\Phi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle \pm|11\rangle) \\
& \left|\Psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle \pm|10\rangle)
\end{aligned}
$$

Show that these states are simultaneous eigenstates of the operators XX and ZZ. For each of the four Bell states, determine the eigenvalues of XX and ZZ.

Solution:
(a) We have the matrices

$$
\begin{gathered}
X X=\sigma_{x} \otimes \sigma_{x}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
Z Z=\sigma_{z} \otimes \sigma_{z}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

(b) The commutator $[\mathrm{XX}, \mathrm{ZZ}]$ then becomes

$$
\begin{aligned}
{[X X, Z Z] } & =X X \quad Z Z-Z Z X X \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)-\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& {[X X, Z Z]=0 }
\end{aligned}
$$

(c) The eigenstates of the XX and ZZ matrices are

$$
\begin{aligned}
& X X\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}} X X\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \sqrt{ } \\
& X X\left|\Phi_{-}\right\rangle=\frac{1}{\sqrt{2}} X X\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right) \quad \sqrt{ } \\
& X X\left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}} X X\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right) \quad \sqrt{ } \\
& X X\left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}} X X\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right) \quad \sqrt{ } \\
& Z Z\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}} Z Z\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \sqrt{ } \\
& Z Z\left|\Phi_{-}\right\rangle=\frac{1}{\sqrt{2}} Z Z\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \quad \sqrt{ } \\
& Z Z\left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}} Z Z\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
-1 \\
0
\end{array}\right) \quad \sqrt{ } \\
& Z Z\left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}} Z Z\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right) \quad \sqrt{ }
\end{aligned}
$$

which correspond to the XX eigenvalues $\lambda_{\Phi_{+}}, \lambda_{\Psi_{+}}=1, \lambda_{\Phi_{-}}, \lambda_{\Psi_{-}}=-1$ and ZZ eigenvalues of $\lambda_{\Phi_{+}}, \lambda_{\Phi_{-}}=$ $1, \lambda_{\Psi_{+}}, \lambda_{\Psi_{-}}=-1$
(d) If we prepare the state

$$
\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle),
$$

the only possible outcomes of XX are its eigenvalues of ± 1. If XX changes from 1 to -1 , we know that we are either in the state

$$
\left|\Phi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)
$$

or

$$
\left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

In the $\left|\Phi_{-}\right\rangle$case, there is no bit flip, but there is a phase flip. In the $\left|\Psi_{-}\right\rangle$case, there is a bit flip on B and a phase flip.
So, we know that there was a phase flip and bit bit flip on A, but we aren't sure if there was a bit flip on B.
(e) If ZZ goes tom 1 to -1 , the possible states are

$$
\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

and

$$
\left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

this tells us that qubit B had a bit flip and A did not, but we're unsure whether a phase flip occurred. However, the qubits are indistinguishable,
so the most that we can conclude is that a bit flip occurred on one of the bits.

