Physics 531 — Problem Set 2 R. McDermott
Due in class Monday Feb. 11

1. Griffiths Problem 2.1.

2. Griffiths Problem 2.2.

3. Griffiths Problem 2.5.

4. Griffiths Problem 2.6.

5. Griffiths Problem 2.7.

6. Griffiths Problem 2.8.

7. Griffiths Problem 2.9.



Problem 2.1 Prove the following three theorems:

(@) For normalizable solutions, the separation constant £ must be real. Hint: Write E
(in Equation 2.7) as Eg + iI" (with Eg and I" real), and show that if Equation 1.20
1s to hold for all 7, I" must be zero.

(b) The time-independent wave function ¥ (x) can always be taken to be real (unlike
W (x, 1), which is necessarily complex). This doesn’t mean that every solution to
the time-independent Schrodinger equation is real; what it says is that if you’ve got
one that is not, it can always be expressed as a linear combination of solutions (with
the same energy) that are. So you might as well stick to s that are real. Hint: If
¥ (x) satisfies Equation 2.5, for a given E, so too does its complex conjugate, and
hence also the real linear combinations (Y + ¥*) and i (Y — ¥*).

(¢) If V(x) is an even function (thatis, V(—x) = V(x)) then ¥ (x) can always be taken
to be either even or odd. Hint: If ¥ (x) satisfies Equation 2.5, for a given E, so too
does ¥ (—x), and hence also the even and odd linear combinations ¥ (x) £ ¥ (—x).
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Problem 2.2 Show that £ must exceed the minimum value of V (x), for every normalizable
solution to the time-independent Schrodinger equation. What is the classical analog to this
statement? Hint: Rewrite Equation 2.5 in the form

d*y  2m
T h—zlv(x) — Ely;

if £ < Vmin, then ¥ and its second derivative always have the same sign—argue that such
a function cannot be normalized.



Problem 2.5 A particle in the infinite square well has as its initial wave function ap even
mixture of the first two stationary states:

W(x,0) = A[y1(x) + y2(x)).

(@) Normalize W (x, 0). (That is, find A. This is very easy, if you exploit the orthongy.
mality of ¥, and V. Recall that, having normalized W at 1 = 0, you cap rest
ussur;'d that it stays normalized—if you doubt this, check it explicitly after dOing
part (b).) : : '

(b) Find W(x, t) and |W(x, 1)|>. Express the latter as a snms?ldal function of time, as
in Example 2.1. To simplify the result, let w = 7w “h/2ma“.

(¢) Compute (x). Notice that it oscillates in time. What is the angular frequency of the
oscillation? What is the amplitude of the oscillation? (If your amplitude is greater
than a/2, go directly to jail.)

(d) Compute (p). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)

(e) If you measured the energy of this particle, what values might you get, and what s
the probability of getting each of them? Find the expectation value of H. How does
it compare with £, and E,?

Problem 2.6 Although the overall phase constant of the wave function is of no physical
significance (it cancels out whenever you calculate a measurable quantity), the relative
phase of the coefficients in Equation 2.17 does matter. For example, suppose we change
the relative phase of y| and v, in Problem 2.5:

V(0 = A1 (x) + ).

where ¢ is some constant. Find W (x, 1), |¥(x, 1)|%, and {(x), and compare your results
with what you got before. Study the special cases ¢ = 7/2 and ¢ = 7. (For a graphical
exploration of this problem see the applet in footnote 9 of this chapter.)

Problem 2.7 A particle in the infinite square well has the initial wave function

W(x,0) = Ax, 0<x<a/2,
: Afla—x), a/2<x=<a.

(@) Sketch W(x, 0), and determine the constant A.
(b) Find W(x, 1).

(c) What is the probability that a measurement of the energy would yield the value £’
(d) Find the expectation value of the energy, using Equation 2.21.2!
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Problem 2.8 A particle of mass m in the infinite square well (of width a) starts out in the
state
A, 0<x=a/2,

W(x,0) =
& 0 a/2sx<a,

for some constant A, so it is (at t = 0) equally likely to be found at any point in the left
half of the well. What is the probability that a measurement of the energy (at some later
time 7) would yield the value 72k%/2ma??

Problem 2.9 For the wave function in Example 2.2, find the expectation value of H, at time
t = 0, the “old fashioned” way:

(H) = f W(x, 0)* H¥(x,0) dx.

Compare the result we got in Example 2.3. Note: Because (H) is independent of time,
there is no loss of generality in using ¢ = 0.
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