
Physics 531 Homework 8

Luis Guzman

Monday, April 1 2019

2. Rabi oscillations. Consider a spin-1/2 particle in a magnetic field ~B = B0ẑ such that the spin eigenstates
are split in energy by h̄ω0 (let’s label the ground state |0〉 and the excited state |1〉). The Hamiltonian for
the system is written as

HZeeman = − h̄ω0

2
σz;

here and below, σx,y,z are the usual Pauli matrices. A second, oscillating field is applied in the transverse
plane, giving rise to a time-dependent term in the Hamiltonian

HRabi =
h̄ω1

2
(cosωt σx − sinωt σy),

where ω1 parameterizes the strength of the oscillating transverse field and where in general ω1 6= ω0.

(a) Construct the 2 × 2 Hamiltonian matrix.

(b) Use the time-dependent unitary transformation U = e(iωt/2)σz to transform to a reference frame rota-
ting with the oscillating transverse field. Recall that a state |ψ〉 in the laboratory frame is transformed
to the state ψ̃ = Uψ in the rotating frame. Evaluate the time derivative dψ̃/dt to derive the Schrodinger
equation in the rotating frame. What is the effective Hamiltonian in the rotating frame?

(c) Take the initial state |ψ(t = 0)〉 = |0〉. Compute the time evolution of the state in the rotating frame
for arbitrary detuning ∆ = ω − ω0 of the drive frequency from the Larmor frequency. Feel free to do
this numerically. If you take a numerical approach, generate a surface plot of 〈σz〉 versus time and
drive detuning. If you take an analytic approach, derive an expression for |ψ̃(t)〉 as a function of ∆
and use this to compute 〈σz〉 (t; ∆). Again, work in the rotating frame, where Heff is time-independent.
(Otherwise this problem will be very difficult!)

Solution:

(a)

H =
−h̄ω0

2
σz +

h̄ω1

2
(cosωt σx − sinωt σy)

=
h̄

2

(
−ω0 ω1(cosωt− i sinωt)

ω1(cosωt− i sinωt) ω0

)

H =
h̄

2

(
−ω0 ω1e

iωt

ω1e
iωt ω0

)

(b) In order to find the effective Hamiltonian, we must transform the time-dependent Schrodinger equation
into the rotating frame using the unitary transformation U = e(iωt/2)σz . Notice that
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ih̄
dψ

dt
= Ĥψ,

U̇ =
−iω

2
σzU,

ψ̇ =
1

ih̄
Ĥψ

Transforming ψ into ψ̃ = Uψ, we can evaluate the right hand side of the Schrodinger equation using
the chain rule.

ih̄
d

dt
(Uψ) = ih̄[U̇ψ + Uψ̇]

= ih̄[
−iω

2
σzUψ +

1

ih̄
Ĥψ

=
h̄ω

2
σzUψ + UĤU†Uψ

=
h̄ω

2
σzψ̃ + H̃ψ̃

This is the Schrodinger equation for our rotating frame with

H̃ = UĤU†

=
h̄

2
e

−iωt
2 σz

(
−ω0e

iωt
2 ω1e

iωt
2

−ω1e
−iωt

2 −ω0e
iωt
2

)

=
h̄

2

(
−ω0 ω1

ω1 ω0

)
and we can read off the effective Hamiltonian.

Heff =
h̄ω

2
+ H̃

Heff =
h̄

2

(
ω − ω0 ω1

ω1 −(ω − ω0)

)

(c) Let the Rabi frequency ωR be the field oscillation frequency ω1 plus some arbitrary detuning ∆. The
values add in quadrature since they are all vectors.

ωR =
√

∆2 + ω2
1

In terms of this frequency, the Rabi time evolution operator becomes

URabi = exp
−iωRt

2

(
∆

ωR
σz +

ω1

ωR
σx

)
=

(
c− is ∆

ωR
−is ω1

ωR
−is ω1

ωR
c+ is ∆

ωR

)

where c ≡ cos ωRt2 and s ≡ sin ωRt
2 . To find the time evolution of our initial state, we just apply this

operator.
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|ψ(t = 0)〉 = |0〉 =

(
1
0

)
|ψ(t)〉 = URabi

(
1
0

)
=

(
c− is ∆

ωR
−is ω1

ωR

)

Using this time evolved state, we can solve for 〈σz〉 in the typical fashion.

〈σz〉 = 〈ψ|σz|ψ〉

=
(
c− is ∆

ωR
−is ω1

ωR

)(1 0
0 −1

)(
c− is ∆

ωR
−is ω1

ωR

)
= c2 + s2 ∆2

ω2
R

− s2 ω
2
1

ω2
R

〈σz〉 = cos2

(√
∆2 + ω2

1 t

2

)
+ sin2

(√
∆2 + ω2

1 t

2

)[
∆2 − ω2

1

∆2 + ω2
1

]

3. Inhomogeneous broadening. Consider an ensemble of spins initialized in the state 1√
2
(|0〉+ |1〉). Each spin

is subjected to a slightly different Zeeman field, so that the distribution of detunings ∆ from the average
Larmor frequency ω0 is given by

P (∆) =
1√

2πσ2
e−∆2/2σ2

here σ is the standard deviation of the distribution of Larmor frequencies (not a Pauli matrix! - beware the
clash of notation), due for example to an inhomogeneous magnetic field across the spin sample. Work in a
reference frame rotating at the average Larmor frequency ω0.

(a) In this reference frame, what is the Hamiltonian for a single spin whose Larmor frequency is detuned
by ∆ from ω0? What is the unitary time evolution operator?

(b) Calculate the time-evolved state for a single spin with detuning ∆ in this rotating frame. Hint. For
∆ = 0, the state will not evolve in time. Calculate 〈σx〉 (t; ∆) for a single spin at detuning ∆.

(c) Now average your answer for 〈σx〉 (t; ∆) over the whole spin ensemble to compute what is called in
the NMR world the “free induction decay” of the sample. The decay of the signal is due to rapid
loss of phase coherence as different spins precess at different rates. In the Fourier domain, this cor-
responds to a broad spectral response. Broadening of the resonant response due to extrinsic effects
(such as a nonuniform magnetic field) is known as inhomogeneous broadening. In this example, the
phase coherence time of the individual spins in the ensemble is infinite (we have not yet talked about
how to treat decoherence of quantum systems). In the case of inhomogeneous broadening, it turns out
that it is possible to play some tricks to “resurrect” the coherent magnetization of the spin ensemble
long after the free induction signal has decayed away to zero.

(d) Now consider the following spin echo sequence (still in the rotating frame): free evolution for fixed
time τ − π rotation about x – free evolution for variable time t Construct the unitary operator that
describes this evolution. For a single spin with detuning Delta, construct the time-evolved state.

(e) For the spin echo sequence, average 〈σx〉 (t; ∆) over the whole spin ensemble to compute the echo signal.
Sketch or plot the echo signal for the range (t− 5/σ, t+ 5/σ). Explain.

3



Solution:

(a) Heff and URabi are the same as in the previous question.

Heff =
h̄

2

(
ω − ω0 ω1

ω1 −(ω − ω0)

)

URabi =

(
c− is ∆

ωR
−is ω1

ωR
−is ω1

ωR
c+ is ∆

ωR

)
(b) The initial state

|ψ(t = 0)〉 =
1√
2

(|0〉+ |1〉)

transforms into

|ψ(t)〉 = Uψ =
1√
2

(
c− is∆+ω1

ωR

c+ is∆−ω1

ωR

)
From this, we can compute 〈σx〉

〈σx〉 = 〈ψ|σx|ψ〉

=
1

2

(
c− is∆+ω1

ωR
c+ is∆−ω1

ωR

)(
0 1
1 0

)(
c− is∆+ω1

ωR

c+ is∆−ω1

ωR

)

=
1

2

[
c2 + ics

(
∆ + ω1

ωR

)
+ ics

(
∆− ω1

ωR

)
− s2

(
∆ + ω1

ωR

)(
∆− ω1

ωR

)

+ c2 − ics
(

∆ + ω1

ωR

)
− ics

(
∆− ω1

ωR

)
− s2

(
∆ + ω1

ωR

)(
∆− ω1

ωR

)]

〈σx〉 = c2 − s2 ∆− ω1

∆ + ω1

where again c ≡ cos ωRt2 and s ≡ sin ωRt
2 . As a check, we can plug in ∆ = 0 and notice that 〈σx〉 =

c2 + s2 = 1, which is expected for a system with no detuning.

(c) Averaging over the entire spin ensemble, we get

〈σx〉avg =

∫ ∞
−∞
〈σx〉P (∆)d∆

=

∫ ∞
−∞

(
cos2 ωRt

2
− sin2 ωRt

2

(
∆− ω1

∆ + ω1

))
1√

2πσ2
e−∆2/2σ2

d∆

which evaluates to

〈σx〉avg = e−σ
2t2/2

(d) Our unitary operator is URabi for all times other than when t = τ . At this time, we to a unitary rotation
about x, described by U = exp −iπh̄ x̂S~

~

where S~

~

is the spin matrix. This can be written as the following
conditional statement.

U =

{
URabi, for t 6= τ

exp −iπh̄ x̂S~

~

, for t = τ

=

{
URabi, for t 6= τ

exp −iπh̄ σx, for t = τ
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After evolution, our initial state then becomes

|ψ(t = 0)〉 =
1√
2

(
1
1

)

|ψ(t)〉 =


1√
2

(
c− is∆+ω1

ωR

c+ is∆−ω1

ωR

)
, for t 6= τ

1√
2

exp −iπh̄ σx

(
c− is∆+ω1

ωR

c+ is∆−ω1

ωR

)
, for t = τ

This makes sense, as our state is identical to the state in part b until the time τ , after which it it
simply multiplied by the unitary rotation operator.

(e)

〈σx〉 = c2 − s2 ∆− ω1

∆ + ω1
for all t

since the rotation drops out of the expectation value:

e
−iπ
h̄ σx 〈ψ|σxe

−iπ
h̄ σx |ψ〉 = e0 〈ψ|σx|ψ〉 = 〈ψ|σx|ψ〉

〈σx〉avg =

∫ ∞
−∞
〈σx〉P (∆)d∆

=

∫ ∞
−∞

(
cos2 ωRt

2
− sin2 ωRt

2

(
∆− ω1

∆ + ω1

))
1√

2πσ2
e−∆2/2σ2

d∆

The distribution of ∆ is gaussian, so the echo signal will also be gaussian.
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