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1. Gate fidelity. In the quantum computing world, the fidelity of a gate U is evaluated as the mean square
overlap of the experimentally obtained state with the target state, averaged over initial states that point
along the cardinal directions of the Bloch sphere:

Favg =
1

6

∑
|α〉∈ν

| 〈ψideal|U |α〉 |2

where the set of states ν is as follows:

|x±〉 =
|0〉 ± |1〉√

2

|y±〉 =
|0〉 ± i |1〉√

2

|z+〉 = |0〉
|z−〉 = |1〉

(a) One source of infidelity is miscalibration of the control pulse length, giving rise to a systematic overro-
tation or underrotation in state space. Consider a miscalibrated π/2 y-pulse, i.e., a gate that realizes
the rotation Ry(π/2 + δ) instead of the desired rotation Ry(π/2, where δ is a small overrotation angle.
What is the infidelity of the gate?

(b) Now consider a gate where the frequency of the control pulse is detuned from resonance by an amount
∆. Assume the gate duration is τ and that the rate of rotation of the state vector is uniform throughout
the duration of the gate (i.e., fixed Rabi frequency). What is the infidelity of a nominal Ry(π/2 rotation
in terms of ∆ and τ?

Solution:

(a) We can describe the rotation with the unitary rotation operator:

U = Ry(π/2 + δ)

=

(
cos π4 + δ

2 − sin π
4 + δ

2

sin π
4 + δ

2 cos π4 + δ
2

)
=

(
c −s
s c

)

where c ≡ cos π4 + δ
2 and s ≡ sin π

4 + δ
2 .
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By imagining the Bloch sphere, we can determine what ψideal is for each of the states aligned with the
coordinate axes. A rotation of π/2 about the y axis maps x+ to z−, z− to x−, and so on. The states
aligned with the y axis are unchanged. We can then calculate the gate infidelity for each state using
| 〈ψideal|U |α〉 |2.

〈z−|U |x+〉 = 〈1|
(
c −s
s c

)
1√
2

(
1
1

)
=

1√
2

(
0 1

)(c− s
c+ s

)
=

1√
2

(c+ s)

| 〈z−|U |x+〉 |2 =
1

2
(c+ s)2

=
1

2
(1 + cos δ)

The states x−, z+, and z− will have the same infidelity (when squared) due to symmetry. Since y+ and
y− are unchanged, their infidelity is equal to 1. The average gate fidelity is then equal to

Favg =
2

6
(1 + cos δ) +

2

6

=
1

3
(2 + cos δ)

and the infidelity is just

1− Favg =
1

3
(1− cos δ)

We can check that when δ = 0, 1− Favg = 0
√

(b) The detuning alters the axis of rotation so that we are no longer on the y axis.
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Our rotation operator becomes

u · σ =
ω1

ωR
σy +

∆

ω2
σx

R~u(
π

2
) = cos

π

4
1− i sin

π

4
~σ · ~u

=
1√
2

(
1 −i( ∆

ωR
− iω1

ω2
)

−i( ∆
ωR

+ iω1

ω2
) 1

)
=

1√
2

(
1 −ω1−i∆

ωR
ω1−i∆
ωR

1

)

=
1√
2

(
1 −a∗
a 1

)
where a ≡ ω1−i∆

ωR
and a∗ is the complex conjugate of a.

Applying this operator to each of our coordinate axis states, we can calculate the infidelity.

〈z−|R~u(
π

2
)|x+〉 = 〈1| 1√

2

(
1 −a∗
a 1

)
1√
2

(
1
1

)
=

1

2

(
0 1

)(1− a∗
1 + a

)
=

1

2
(a+ 1)

〈z+|R~u(
π

2
)|x−〉 = 〈0| 1√

2

(
1 −a∗
a 1

)
1√
2

(
1
−1

)
=

1

2

(
1 0

)(1 + a∗

a− 1

)
=

1

2
(a∗ + 1)

〈x+|R~u(
π

2
)|z+〉 =

(
1 1

) 1√
2

(
1 −a∗
a 1

)
1√
2

(
1
0

)
=

1

2

(
1 1

)(1
a

)
=

1

2
(1 + a)

〈x−|R~u(
π

2
)|z−〉 =

(
1 −1

) 1√
2

(
1 −a∗
a 1

)
1√
2

(
0
1

)
=

1

2

(
1 −1

)(−a∗
1

)
=

1

2
(−1− a∗)

〈y+|R~u(
π

2
)|y+〉 =

1√
2

(
1 i

) 1√
2

(
1 −a∗
a 1

)
1√
2

(
1
i

)
=

1

2
√

2

(
1 i

)(−1− ia∗
a+ i

)
=

1

2
√

2
(−ia∗ + ia)

〈y−|R~u(
π

2
)|y−〉 =

1√
2

(
1 −i

) 1√
2

(
1 −a∗
a 1

)
1√
2

(
1
−i

)
=

1

2
√

2

(
1 −i

)(−1 + ia∗

a− i

)
=

1

2
√

2
(ia∗ − ia)

The average gate fidelity is then

Favg =
1

6

∑
|α〉∈ν

| 〈ψideal|U |α〉 |2

=
1

24
[(a+ 1)2 + (a∗ + 1)2 + (1 + a)2 + (−a∗ − 1)2 +

1

2
(−ia∗ + ia)2 +

1

2
(ia∗ − ia)2]

=
1

24
[2(a+ 1)2 + 2(a∗ + 1)2 + (−ia∗ + ia)2]

=
1

24
[(2a2 + 4a+ 2) + (2(a∗)2 + 4a∗ + 2) + (−a∗ + aa∗ − a)]

=
1

24
[2
ω2

1 − 2iω1∆−∆2

ω2
R

+ 2
ω2

1 + 2iω1∆−∆2

ωR
+ 3

ω1

ωR
+
ω2

1 + ∆2

ωR
+ 4]

=
1

24
[4
ω2

1 −∆2

ω2
R

+ 3
ω1

ωR
+
ω2

1 + ∆2

ωR
+ 4]

Favg =
1

24ωR
[4
ω2

1 −∆2

ωR
+ 3ω1 + ω2

1 + ∆2 + 4ωR]

With ωR =
√

∆2 + ω2
1 and ω1 = π

2τ .
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2. Rotating wave approximation. Consider the Hamiltonian

H = − h̄ω0

2
σz +

h̄ω1

2
cosωt σx,

where ω1 again parameterizes the strength of the small oscillating field (in general we will have ω1 � ω0).
This is nearly identical to the Rabi Hamiltonian you encountered in several problems last week, with the
difference that the excitation field is now linearly polarized (there is no sinωt σy component).

(a) Use the time-dependent unitary transformation U = e(−iωt/2)σz to transform to a reference frame
rotating at angular frequency ω, the frequency of the excitation field. Derive the effective Hamiltonian
Heff in this rotating frame. Hint. In contrast to the effective Hamiltonian in last week’s problems, this
one will no longer be time-independent.

(b) Consider a spin initially in the ground state |0〉. Integrate the Hamiltonian to determine the time-
evolved state (in the rotating frame). You are free to do this analytically, but a numerical approach
will be simpler. In detail: discretize the time axis and for each small time step treat the Hamiltonian
as fixed so that you can evolve the state in the usual way using the instantaneous unitary evolution
operator. For concreteness, take ω = ω0 (resonant drive) and ω1 = 0.1ω0.

Solution:

Our Hamiltonian is

H = − h̄ω0

2
σz +

h̄ω1

2
cosωt σx

=

(
− h̄ω0

2
h̄ω1

2 cosωt
h̄ω1

2 cosωt h̄ω0

2

)
and our unitary rotation operator is

U = e(−iωt/2)σz

=

(
e(−iωt/2) 0

0 e(iωt/2)

)
The Schrodinger equation in a rotating frame is the same as before (see Homework 8).

ih̄
d

dt
ψ̃ =

h̄ω

2
σzψ̃ + H̃ψ̃

Our effective Hamiltonian is then

Heff = H̃ +
h̄ω

2
σz

which can can write more concretely by solving for H̃

H̃ = UĤU†

=

(
e(−iωt/2) 0

0 e(iωt/2)

)(
− h̄ω0

2
h̄ω1

2 cosωt
h̄ω1

2 cosωt h̄ω0

2

)(
e(iωt/2) 0

0 e(−iωt/2)

)
=

(
e(−iωt/2) 0

0 e(iωt/2)

)(
− h̄ω0

2 e(iωt/2) h̄ω1

2 cosωte(−iωt/2)

h̄ω1

2 cosωte(iωt/2) h̄ω0

2 e(−iωt/2)

)
=

(
− h̄ω0

2
h̄ω1

2 cosωte(−iωt)

h̄ω1

2 cosωte(iωt) h̄ω0

2

)
Heff =

h̄

2

(
(ω − ω0) −ω1 cos(ωt)e(−iωt)

ω1 cos(ωt)e(iωt) −(ω − ω0)

)
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Starting with the differential equation

ih̄
d

dt
Û = HÛ

we can solve for the evolution of our initial state by writing Û in terms of its Dyson series.

Un =

(
− i

h̄

)n ∫ t

0

dt1 · · ·
∫ tn−1

0

dtnH(t1) · · ·H(tn)

U(t, t′) = 1 +

∞∑
n=1

(
− i

h̄

)n
n!

∫ t

t′
dt1 · · ·

∫ tn−1

t′
dtnT [H(t1) · · ·H(tn)]

where, for instance

T [H(t1) · · ·H(tn)] =

{
H(t1)H(t2) if t2 > t1

H(t2)H(t1) if t1 > t2

for n=2. Therefore our initial state evolves as

|0̃〉 = U(t, 0) |0〉

|0̃〉 = |0〉 T e
−i
h̄

∫ t
0
H(t1)dt1

4. Consider a quantum harmonic oscillator with characteristic frequency 0. The system is in thermal equili-
brium at temperature T. The oscillator is described by the following density matrix:

ρ̂ = A exp

(
−Ĥ
kBT

)
,

where Ĥ is the usual harmonic oscillator Hamiltonian and kB is Boltzmann’s constant. Working in the Fock
(photon number) basis:

(a)(a) Find the diagonal elements of ρ̂.

(b) Determine the normalization constant A.

(c) Calculate the expectation value of energy 〈E〉.

Solution:

(a) In the Fock basis, the Hamiltonian of the quantum harmonic oscillator is

Ĥ = h̄ω


1/2 0

3/2
5/2

7/2

0 . . .


Since Ĥ is diagonal, solving for ρ̂ is simply a matter of multiplying by the constant terms and expo-
nentiating the diagonal entries.

ρ̂ = A



e
−h̄ω

2kBT 0
e
−3h̄ω
2kBT

e
−5h̄ω
2kBT

e
−7h̄ω
2kBT

0 . . .
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(b) We can determine the normalization constant by setting the trace of ρ equal to 1.

Tr[ρ] = 1A(e
−h̄ω

2kBT + e
−3h̄ω
2kBT + e

−5h̄ω
2kBT + e

−7h̄ω
2kBT + · · · )

= 1

So then

A =
1∑∞

n=0 e
−h̄ω

2kBT (e
−h̄ω
kBT )n

=
1− e

−h̄ω
kBT

e
−h̄ω

2kBT

for |e
−h̄ω
kBT | < 1

= e
h̄ω

2kBT − e
−h̄ω

2kBT

A = 2 sinh
h̄ω

2kBT

(c) The expected energy is then

〈E〉 =
∑
i,j

Hijρji

= 2h̄ω sinh
h̄ω

2kBT

∞∑
n=0

(
1

2
+ n)e

−h̄ω
2kBT (e

−h̄ω
kBT )n

= 2h̄ω sinh
h̄ω

2kBT
e
−h̄ω
kBT

(
1

2(1− e
−h̄ω
kBT )

+
e
−h̄ω
kBT

(1− e
−h̄ω
kBT )2

)
for |e

−h̄ω
kBT | < 1

= 2h̄ω

(
e
−h̄ω

2kBT − e
−3h̄ω
2kBT

)(
1 + e

−h̄ω
kBT

2(1− e
−h̄ω
kBT )2

)

〈E〉 = h̄ωe
−h̄ω

2kBT

(
1 + e

−h̄ω
kBT

1− e
−h̄ω
kBT

)
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